
A Framework for Developing 2D
Games

Liam Power 16148983
Eric Nolan 15150305
Kyran Healy 16158598
Daniel Keighley 16185153

CS4227 Project
J.J. Collins

Computer Science and Information Systems
University of Limerick

CONTENTS

1 Requirements 5
1.1 Use Case: Client Developers 5
1.2 Use Case: Customers . 5
1.3 Quality Attributes . 7

1.3.1 Performance . 7
1.3.2 Extensibility . 7
1.3.3 Flexibility . 8

2 Design 9
2.1 Entity-Component-System . 9

2.1.1 Entities . 9
2.1.2 Components . 9
2.1.3 Systems . 10

2.2 Interceptors . 12
2.2.1 Context Objects . 12
2.2.2 Concrete Interceptors 13
2.2.3 Dispatchers . 14

2.3 Game Saves . 14
2.4 User Input . 15

2.4.1 Invoker . 15
2.4.2 Command Design Pattern 15

2.5 Prototype . 17
2.6 Abstract Factory . 17
2.7 Builder . 18

3 Architecture 20
3.1 Framework . 20

1

3.2 Game . 22

4 Implementation 23
4.1 Interceptor Dispatcher . 23
4.2 CS4125 Code . 24
4.3 Space Invaders Game . 25

4.3.1 Score System . 25
4.4 UI Framework . 26

5 Added Value 29
5.1 Repositories . 29
5.2 Reflection-based Interceptors 30

6 Testing 32
6.1 Unit testing with JUnit4 . 32

6.1.1 Entity Creation Test . 32
6.1.2 Interceptor Test . 33
6.1.3 Component Consumer Test 35
6.1.4 Command Test . 36

7 Evaluation 37
7.1 Known Issues . 37

7.1.1 Java Generics Type Erasure 37
7.1.2 Save Game Loading . 38

7.2 Suitability . 39
7.3 Potential Improvements . 40

7.3.1 LambdaMetafactory and Reflection Calls 40
7.3.2 EnumMap . 40

8 Contribution 41
8.1 Lines of Code Per Class . 41
8.2 Lines of Code Per Contributor 43
8.3 Report . 43

2

INDEX OF DESIGN PATTERNS

1 Entity-Component-System . 9
2 Interceptor . 12
3 Repository . 14
4 Memento . 14
5 Adapter . 14
6 Command . 15
7 Prototype . 17
8 Abstract Factory . 17
9 Builder . 18

3

ABSTRACT

We present an implementation of a simple 2D game framework in Java de-
signed to mimic an arcade game machine or games console — end users
may load games into the application and client developers may write new
games using our exposed APIs. We demonstrate the capabilities of this
framework through an example game, a simple Space Invaders clone. In
our implementation, we show how the latest features of the Java program-
ming language may be used to enhance code expressiveness, safety and
flexibility by incorporating concepts from functional programming into
traditional design patterns and best practices.

4

CHAPTER 1: REQUIREMENTS

Typically, games consoles support a variety of different games written by
many different client developers. It is the responsibility of the console
manufacturers and system programmers to build a foundation on which
many different kinds of games may be built. Our project attempts to simu-
late this scenario by exposing a framework which may be used to develop
different kinds of 2D games.

Broadly, we envision two distinct use cases for this project: client game
developers using our framework to produce and publish their own games,
and the customers actually playing these games.

1.1 USE CASE: CLIENT DEVELOPERS

Using our framework, third-party game developers may create and pub-
lish their own 2D games. Though not explicitly supported in the delivered
project, the intent is that third-party developers will produce and sell soft-
ware artefacts on our system (similar to the Steam store or PlayStation
store).

1.2 USE CASE: CUSTOMERS

Players may log into our system and explore the various games they have
purchased. In our project deliverable, we showcase this feature through
the example Space Invaders game.

5

Figure 1.1: Use case diagram for our framework from the perspective of a user

Figure 1.2: Interaction diagram for our framework from the perspective of a user

6

1.3 QUALITY ATTRIBUTES

1.3.1 Performance

It is nearly impossible to produce a quality game system without giving
careful consideration to performance. Games must be able to consistently
respond to player input quickly enough to sustain the illusion of fluid
motion; any discrepancies are quickly noticed (and complained about) by
players. To this end, we have used several tactics to ensure that our system
delivers acceptable performance.

Firstly, we provide an implementation of the Entity-Component-System
architectural pattern. This allows client developers to process their game
data in aggregated chunks which should result in much better cache utili-
sation compared to a traditional deep inheritance hierarchy.

We also offer Object Pools in our framework to help minimise Java heap
allocations. This is demonstrated in the Space Invaders example game,
where object pools are used to store component data for projectiles; with-
out pools these projectiles could potentially create huge amounts of garbage
objects and cause immersion-breaking garbage collection pauses.

1.3.2 Extensibility

Extensibility is of huge importance to our project — client developers must
be able to use our framework to construct a range of different game appli-
cations.

We support framework-level extensibility primarily through the use of the
Interceptor pattern, as this allows client developers to fluidly hook into
framework events simply by annotating their interceptor methods with
the @Intercepts annotation. The interceptor pattern allows us to develop
framework subsystems completely independent from one another — for
example our authentication code communicates with the rest of the sys-
tem only by receiving LoginAttemptEvent instances and emitting further
events for the rest of the framework to process.

We have also designed the Entity-Component-System to be as extensible
as possible by making heavy use of Java generic classes and functional in-
terfaces. As discussed in section 1, we allow client developers to specify

7

their own component data packages and relationships between them. This
allows our ECS implementation to be adapted into a wide range of use
cases without the need for changes to the framework code. For example,
to add health-bars (a common sight in 2D games) to our Space Invaders ex-
ample game, we would simply create the Combiner drawHealthBar which
accepts a SpriteComponent and a HealthComponent. We can then draw a
rectangle on the screen using the input health value to compute its width,
and the input sprite component to compute its screen coordinates.

1.3.3 Flexibility

Flexibility is also a key attribute of our project. Our framework allows us
to allow clients to be able to develop their own applications/games in-
dependently. Our entity component systems allows clients to create their
own components that can have totally different properties and attributes
to our space invaders components. The ECS is entirely generic and allows
for clients to supply any classes to it.

Our framework is also independent of the Game package and any classes
in that package. This means that a client can create their own game us-
ing our framework that can play totally differently to our Space invaders
example game Our game view class is the only communication between
the GameApplication that is being used and the Framework. This allows
clients to create virtually any 2D game with our framework. The only re-
quirement is it extends from the GameApplication class.

8

CHAPTER 2: DESIGN

2.1 ENTITY-COMPONENT-SYSTEM

2.1.1 Entities

In our implementation, entities exist only as opaque keys in a database,
represented by the EntityId class. This allows the framework to change
how entity ids are generated and implemented without affecting client
code. In our implementation, we use a simple incrementing AtomicInteger,
though this could easily be changed to a UUID or some other form of
unique identifier.

2.1.2 Components

Components are small packages of related data containing little or no be-
haviour. In our example Space Invaders game, we use components to rep-
resent several different kinds of game data including velocity, sprites and
health values. We use the tag interface Component to communicate the
intent of a component class and to ensure that classes which are not ex-
plicitly marked as components are not accidentally added into the entity
database by client developers.

In the name of brevity, we deliberately ignore some commonly accepted
Java best practices in component classes, in particular the use of public
mutable fields. It is likely that using accessor methods to hide these fields
would simply bloat the codebase and possibly cause performance prob-
lems in a sensitive part of the system.

9

2.1.3 Systems

In traditional entity-component-system architectures, "entities" are con-
structed from discrete data chunks, the "components" and then processed
in groups by the systems. This design ensures clean separation of concerns
between game systems as each system is only operating on one kind of
data. In our implementation, we augment this pattern with concepts from
functional programming, primarily the idea of first-class functions and the
map idiom. We use Java 8 Functional Interfaces and lambda expressions to
emulate the first-class functions found in purely functional languages. We
begin by stripping the API of "System" classes down to two function types,
Processors and Combiners, bearing the following signatures in Java:

// Component consumer -> processes component data
// C is any class that implements Component
void process(C component);

// Component combiner -> combines two kinds of data
// A and B are any classes that implement Component
void combine(A inout, B in);

We define a Consumer to be a function which accepts a type of component
data and performs some transformation on it. Consumers can be used to
implement "end-of-the-line" functionality; for example a RenderConsumer
class might accept sprite data components and display them to the screen.

private void drawSprite(SpriteComponent s) {
graphics.drawImage(s.getImg(), s.x, s.y);

}

Listing 1: Example of a consumer function: rendering sprites in Space Invaders

A Combiner is a function which, like the consumer, accepts and transforms
component data. Unlike the consumer however, combiners operate on
two component types; an inout parameter and an in parameter. In a com-
biner, the inout parameter is permitted to be changed by the combiner
function while the in parameter is not. Combiners can be used where
the processing of one component is dependant upon some other linked
component. In our example game, combiners are used to implement ani-
mation by adding the velocity of every velocity component to every sprite
component. We do not need to introduce combiners with more than two

10

parameters as combiners with this functionality may be composed out of
simpler two-parameter combiners.

private void drawHealthBar(SpriteComponent s, HealthComponent h) {
graphics.drawRect(s.x - 10, s.y + 10, h.currentHealth, 5);

}

Listing 2: Example of a combiner: Drawing health-bars in Space Invaders

To actually execute these functions, clients call either applyConsumer or
applyCombiner, much like executing queries on a database. For example,
in our Space Invaders renderer, we use a consumer to render sprites to the
screen with the following call:
entityDB.applyConsumer(this::renderSprite, SpriteComponent.class)

It should be noted that while this design takes ideas from functional pro-
gramming it is not, strictly speaking, functional. This is because these con-
sumers and combiners affect the program’s state by modifying their pa-
rameters directly; in a purely functional implementation, we would com-
pute new component instances from input data and have a class further
up the call chain operate on these new objects.

11

2.2 INTERCEPTORS

The Interceptor architectural pattern forms the spine of our framework, or-
ganising and processing messages between the various independent sub-
systems. In our implementation, we make use of Java Annotations to de-
fine our Interceptors as instance methods which accept a context object as
a parameter. This design allows arbitrary classes to register themselves as
interceptors without the need for maintaining interceptor interfaces on the
framework side

To allow client developers to mark methods as interceptors, we provide
the @Intercepts source annotation which accepts one parameter: a partic-
ular context object this interceptor will respond to. Client developers must
then register their classes with the framework. During registration, the
framework will scan registered classes for methods marked with the Inter-
cepts annotation. Marked methods are then placed into an index structure
which maps context object types to responder objects. When the frame-
work fires an event, the dispatcher will look up the particular event type
in this index and then execute all of its responder methods.

2.2.1 Context Objects

Our context objects are simple POJO (Plain Old Java Object) classes with
little to no behaviour; they are simple data packages passed between the
framework and client applications. Context Objects are also required to be
immutable — this ensures that malicious or erroneous interceptors may
not corrupt the message before it is sent to other interceptors. To propagate
state changes to the framework, client developers must emit their own
events.

As our context objects are required to be immutable, we deliberately es-
chew some established Java best practices to enhance code brevity and
readability. We do not, generally, write accessor methods for context ob-
ject fields; most of our context object classes are simply collections of fields
marked public final.

12

public final class PopupMessageEvent {
public final String msg;

public PopupMessageEvent(String msg) {
this.msg = msg;

}
}

Listing 3: Entirety of one of our context objects: a message signaling to show the user a
pop-up message.

A method of automatically and formally declaring objects immutable would
be an excellent addition to this design, and to the Java programming lan-
guage. While we investigated some methods of achieving this goal, such
as writing custom Java compiler plugins, these were determined to be too
time consuming for this project.

2.2.2 Concrete Interceptors

In our design, concrete interceptors are actually not class instances but
rather instances of the Java reflection Method class — in essence, function
pointers. Interceptor methods are marked as such by the @Intercepts
Java annotation, with a parameter specifying which event types they are
promising to handle. To begin receiving events, a class with intercep-
tor methods defined must register itself with a Dispatcher class instance.
Later, when an event is emitted, the dispatcher will look up which inter-
ceptor method instances to call depending on the type of event emitted.

In the example below, we mark the method onKeyDown as an interceptor
for the KeyInputEvent event class and then register the containing class
instance with a dispatcher. When the user hits a key on their keyboard,
the framework will automatically invoke the interceptor method.

13

// (in class constructor, given a Dispatcher instance)
dispatcher.register(this);
// ...

// Interceptor
@Intercepts(KeyInputEvent.class) // Specifies event type
public void onKeyDown(KeyInputEvent key) {

// Client processing
}

Listing 4: Example code to create an interceptor for keyboard events

2.2.3 Dispatchers

In the design of our framework, we employ only one Dispatcher instance.
Because we use Runtime Type Information (RTTI) to determine which in-
terceptor to call at runtime, our dispatchers simply other classes through-
out client code and the framework who emit events.

2.3 GAME SAVES

We utilise a combination of the Adapter, Memento and Repository patterns
to support extensibile and reliable data storage and retrieval. Repositories
allow us to abstract away the implementation details of data storage back-
ends, allowing our system to support transparently swapping out an SQL
storage backend for a JSON one, for example. In our implementation, we
provide one concrete repository, the JsonRepository.

To allow players to save and load their games, we utilise the Memento
design pattern. Since the intention is that most developers will make use
of the EntityDatabase class to store their games’ state, we allow client de-
velopers to take ’Snapshots’ of the database’s internal state. These Snap-
shot instances are entirely opaque to clients, who may only pass them
back to a database instance when they wish to restore it to the Snapshot’s
state. This is accomplished by having Snapshot be an internal class of
EntityDatabase with all fields, constructors and methods marked private.
This ensures that Snapshots are not accidentally corrupted by client code.

Since our repository code was originally written for the CS4125 project,
our repositories are constrained by the type system to work only with

14

classes that extend the Model abstract class. To showcase the adapter pat-
tern, we treat the repository code as a third-party library and create repos-
itories of snapshots via a generic ModelAdapter. By supplying what type
to adapt to a Model as a generic parameter, we can create a single adapter
class which allows any other class to be converted into a Model for use
with repositories.

2.4 USER INPUT

2.4.1 Invoker

The role of an Invoker in the Command Design Pattern is the execute a
command that is assigned to it. In our program it executes the command
based off which key is pressed and acts essentially like a middle man for
the Command design and Application. When a key is pressed the Invoker
is called to see if it is linked to a action. If it is the Invoker then executes
the command.

private void initGameControlScheme() {
gameControls.put(KeyEvent.VK_A, new CommandMoveLeft(this.movableSprite));
// ...

}

Listing 5: Passing in value to Invoker

2.4.2 Command Design Pattern

We use the Command Design Pattern for player movement and actions
like saving game. As stated above the user presses a key which executes
a command via Invoker. Each command is a class that implements the
following interfaced name ActionCommand.

interface ActionCommand {
void execute();

}

Listing 6: Command Interface

The interface consists of only one method which is called execute(). This
is so the classes are not forced to implement redundant methods. This al-

15

lows for polymorphism which makes executing child classes much easier.
There are numerous benefits to adopting this Design pattern for instance
the ability to allow numerous keys to trigger the same command and it
also promotes separation of concerns.

Key Press Event

command.execute()

Application ActionCommand

execute()

UserInput

Figure 2.1: Communication between invoker and command

16

2.5 PROTOTYPE

The Prototype design pattern delegates the process of being cloned to the
object being cloned. In our program we have an interface called Prototype
which is inherited by components.Components are used to build player
and non-player entities. The interface contains two methods reproduce()
and equals(). reproduce() reproduces the component it is called on and
returns the copy. equals() compares two components of the same instance
to see if they are identical. We utilize the Prototype design when making
projectiles.

public interface Prototype<C extends Component> {
C reproduce();

default boolean equals(C c) {
return false;

}
}

Listing 7: Prototype Interface

2.6 ABSTRACT FACTORY

An Abstract factory encapsulates a group of individual factories without
specifying its concrete classes. In this project we used an abstract factory
method to create different alien types with different attributes.

All alien types extend from the AlienFactory class. The factories have a
concrete method buildAlien which creates an entity ID and the compo-
nents that the Alien requires. In this project an Alien requires a health,
velocity, wobble (oscillation) and Sprite component.

17

abstract class AlienFactory {
final ResourceCatalog gameResources;

AlienFactory(final ResourceCatalog gameResources) {
this.gameResources = gameResources;

}

abstract void buildAlien(EntityDatabase eDB, int aX, int aY);
}

Listing 8: API of our abstract alien factory

We use Abstract Factories to support the creation of aliens with more health
("tank" aliens) faster aliens along with our regular default enemies. Cre-
ation logic for different kinds of aliens is entirely encapsulated within the
factories.

private void buildAliens() {
for (int alienX = 0; alienX < 5; ++alienX) {

for (int alienY = 0; alienY < 6; ++alienY) {
if (alienY == 0 || alienY == 5) {

tankAlienFactory.buildAlien(this.entityDB, alienX, alienY);
} else if (alienY == 1 || alienY == 4) {

fastAlienFactory.buildAlien(this.entityDB, alienX, alienY);
} else {

defaultAlienFactory.buildAlien(this.entityDB, alienX, alienY);
}

}
}

this.alienCount = 30;
}

Listing 9: Constructing aliens with factories in Space Invaders

2.7 BUILDER

Over the course of the project, we were required to create several different
GUI screens using the JavaFX Swing API’s GridBagConstraints. Manu-
ally creating these screens, represented in our code as JPanel objects, is
time-consuming and repetitive. To reduce code duplication and speed up

18

development, we abstract the process of creating JPanel screens into a
Builder class, JPanelFormBuiler.

// Screen initialisation
++constraints.gridy
constraints.gridx = 0;
constraints.weightx = 0.5;
form.add(new JLabel("Username"), constraints);
constraints.gridx = 1;
constraints.weightx = 1;
constraints.gridx = 1;
constraints.weightx = 1;
form.add(new JTextField, constraints);
// Many more repeated component additions...

Listing 10: Laborious manual construction of GridBagConstraints GUI screens

JPanelFormBuidler builder = new JPanelFormBuilder();
builder.add(new JTextField(), "Username");
builder.add(new JPasswordField(), "Password");
builder.add(new JButton("Login"));
JPanel resultForm = builder.getForm();

Listing 11: The same form refactored to use the Builder pattern

19

CHAPTER 3: ARCHITECTURE

At the highest level, we employ a split architecture, utilising the Model-
View-Controller architectural pattern for areas of the framework that are
not performance-sensitive, such as the UI and user account systems; for
the main game code which must be made to run as fast as possible, we
employ a variation on the traditional Entity-Component-System.

The main project source tree is split into two packages, framework and
game. The framework package contains all of the code necessary to write a
simple 2D game, including an Entity-Component-System, texture library
and a Java Swing renderer. The game package contains code for a sim-
ple Space Invaders game which showcases the various components made
available in our framework. The framework package is entirely indepen-
dent from the game package.

3.1 FRAMEWORK

Our framework source code is entirely contained inside the framework
package. In principle, this package is completely decoupled from the game
package. The framework controls most aspects of the application’s execu-
tion, and is responsible for starting up the program. On startup, a list of
classes implementing GameApplication is loaded from some source; in our
proof-of-concept implementation we simply instantiate SpaceInvadersGame
directly however it would not be difficult to refactor this design so that
games were loaded from JAR files, for example.

20

Figure 3.1: Framework package diagram

21

3.2 GAME

The game top-level package contains all of the code for our Space Invaders
example game.

Figure 3.2: Game package diagram

22

CHAPTER 4: IMPLEMENTATION

This section details some interesting aspects of the project’s implementa-
tion code, both in the framework package and in the example game.

4.1 INTERCEPTOR DISPATCHER

We use a central dispatcher for all of our interceptors. This is made possi-
ble by inserting all interceptor methods into an index-like structure where
the class names of the context objects are the keys and the interceptor
methods are the values. In our Dispatcher class, this index is represented
by a ConcurrentHashMap from Class<?> keys to a sorted list of Responder
instances (object-method tuples).

When registering a new responder class with the dispatcher, the class is
examined for any methods marked with the @Intercepts annotation. If
any methods with this annotation are found, they are placed in the dis-
patchers index with a key corresponding to the annotation’s value field.

23

public void register(Object responderObject) {
Class<?> c = responderObject.getClass();
while (c != Object.class) {

for (Method m : c.getDeclaredMethods()) {
if (m.isAnnotationPresent(Intercepts.class)) {

Class<?> eventType = m.getAnnotation(Intercepts.class).value();
m.setAccessible(true);

Priority.Level priority = m.isAnnotationPresent(Priority.class) ?
m.getAnnotation(Priority.class).value() :
Priority.Level.NORMAL;

Responder responder = new Responder(m, responderObject, priority);
List<Responder> responders;

if (! this.responderIndex.containsKey(eventType)) {
responders = new ArrayList<>();
this.responderIndex.put(eventType, responders);

} else {
responders = this.responderIndex.get(eventType);

}

responders.add(responder);
Collections.sort(responders);

}
}

c = c.getSuperclass();
}

}

Listing 12: Dispatcher’s register method

This data organisation optimises for event dispatching — while registra-
tions are more expensive due to the overhead of sorting, dispatching is
made very efficient because we can query for all the interceptors that re-
spond to a particular event type in constant time.

4.2 CS4125 CODE

We have ported the authentication, GUI, dispatcher and repository pat-
terns from our previous CS4125 project [4]. We have applied several refac-
torings and changes to these software modules to fit them into our game

24

framework project:

1. Our dispatcher has been refactored to support priority-sorted lists of
interceptors

2. Our JsonRepository implementation has been extended to support
custom deserialisers

3. Our GUI code has been refactored to support building forms with
our JPanelFormBuilder

4.3 SPACE INVADERS GAME

Along with the framework, we have written a small Space Invaders game
to showcase the capabilities of our framework. In our Space Invaders
game, we make heavy use of the framework’s ECS API. We define several
different kinds of entity in our game, including the player, aliens and pro-
jectiles. These entities are defined by their data, the components they hold.
We attach HealthComponents to aliens and the player, VelocityComponents
to aliens and projectiles and DamageComponents to projectiles. These com-
ponents are then processed by systems, such as the render system.

4.3.1 Score System

Aliens contain a HealthComponent and a ScoreComponent, among other
components. A HealthComponent contains information about an entitys
current and maximum health and a ScoreComponent contains an integer
value for the amount of points the entity is worth.

Within the CollisionSystem a collision involves subtracting the damageValue
of a colliding entity with a DamageComponent from the currentHealth of a
colliding entity with a HealthComponent. Once a collision results in the
death of an entity, ie its currentHealth in its HealthComponent is equal to or
less than zero, a method is triggered to dispatch a new ScoreEvent using a
ComponentCombiner to associate the specific entitys health and score value.
The health and score are accessed from the given components mapped to
its EntityId taken from the component table.

The score event holds the score of the entity and is intercepted by the up-
dateScore method in the RenderSystem. This method simply adds the en-

25

titys score to the scoreboards currentScore. The scoreboard is updated and
drawn on screen in a separate method within the RenderSystem.

4.4 UI FRAMEWORK

The UI is made using the Java Swing library and follows Model-View-
Controller architecture. We have a MainWindow that contains elements
that will always be visible such as the back button and the title of the ap-
plication. Within the window we have a JFrame that displays the current
view, which will always initially be LoginView. Views do not define be-
haviour, they only contain the contents and layout of the JFrame as well as
any listeners that are added to buttons. As shown below in the LoginView:

26

public LoginView(Dispatcher d) {
super(d, "Login");

usernameLabel = new JLabel("Username");
passwordLabel = new JLabel("Password");
usernameInput = new JTextField();
passwordInput = new JPasswordField();
loginButton = new JButton("Login");
registerButton = new JButton("Register");

usernameLabel.setBounds(80, 70, 200, 30);
passwordLabel.setBounds(80, 110, 200, 30);
usernameInput.setBounds(300, 70, 200, 30);
passwordInput.setBounds(300, 110, 200, 30);
loginButton.setBounds(150, 160, 100, 30);
registerButton.setBounds(250, 160, 100, 30);

this.addComponent(usernameLabel);
this.addComponent(passwordLabel);
this.addComponent(usernameInput);
this.addComponent(passwordInput);
this.addComponent(loginButton);
this.addComponent(registerButton);

loginButton.addActionListener(e -> getDispatcher()
.dispatch(new LoginAttemptEvent(getUsername(), getPassword())));

this.registerButton.addActionListener(e -> getDispatcher()
.dispatch(new Redirect(new RegisterView(getDispatcher()))));

}
}

The registerButton will dispatch a Redirect to the RegisterView. A Redirect
simply changes the view the MainWindow JFrame is displaying to the
supplied view.

Also shown is that the loginButton will dispatch a LoginAttemptEvent
along with the login details provided by the user.

27

public final class LoginAttemptEvent {

public final String username;
public final String password;

public LoginAttemptEvent(String username, String password) {
this.username = username;
this.password = password;

}
}

This is a simple event that holds the submitted username and password,
while the attemptLogin method inside of AuthController intercepts any
LoginAttemptEvent. It then checks if such a user exists and if the creden-
tials are correct. If so, it sets the currently logged in user to that user and
dispatches a Redirect to the DashboardView. Otherwise, it creates an er-
ror message in a popup window using the dispatchErrorMessage method
from the Controller superclass which dispatches a PopupMessageEvent
which is intercepted within MainWindow to display the given error within
a generic popup error window.

28

CHAPTER 5: ADDED VALUE

In this section we detail some noteworthy features of our project which
enhance our chosen quality attributes. A common theme amongst all of
these enhancements is the use of the Java static type system to enforce
domain contracts at compile time, and the use of first-class functions to
enhance code conciseness and readability.

5.1 REPOSITORIES

We did not select the repository design pattern as our chosen research pat-
tern, nor is it covered in CS4227. Nevertheless, the repository pattern is so
useful and powerful that we felt the need to include it.

In our project, Repositories are abstractions over a data source which may
be queried and mutated, similar to modern relational databases. We ex-
pose the following API for repositories:

public interface Repository<M extends Model> {
Optional<M> findFirst(Predicate<M> query);
Stream<M> findAll(Predicate<M> query);

void insert(M m) throws IOException;
void delete(M m) throws IOException;
void update(Consumer<M> transformer) throws IOException;

void save() throws IOException;

List<M> all();
}

29

The underlying data source is completely abstracted away; a client may
be working with an SQL database, a JSON file or even a network byte
stream. This is extremely useful for supporting both extensible and flexi-
bility: we may extend our program simply by writing new concrete reposi-
tories against the Repository interface, such as JsonRepository. We achieve
great flexibility by using Java generics to support many different kinds
of data objects without requiring clients to explicitly write new reposi-
tory classes for each kind of object they want to store, for example the
same JsonRepository class may be used to store UserAccount classes or
database snapshots.

We also use bounded generics to support more reliable code — our repos-
itories only accept data which extends from the Model abstract class. This
ensures that data objects in repositories will always have a unique ID, a
guarantee that may be exploited to write more efficient searching and stor-
age code. As an added bonus, this approach means that the Java compiler
will automatically enforce our domain constraints without the need for us
to write runtime validation code.

Finally, we make use of several modern Java language features in our
Repository interface, such as Predicate and Optional. Predicates in par-
ticular allow us to use a powerful standard language feature to express
the concept of data queries without the need to write any custom code.
Clients may simply query for data with lambda expressions or function
references, such as this example from our login handler:

this.userRepository.findFirst(u -> u.validateCredentials(username, password)

5.2 REFLECTION-BASED INTERCEPTORS

In a traditional interceptor design, each type of interceptor requires its
own interface, with clients needing to write new classes to implement
these interfaces. In our project, we achieve a greater degree of flexibil-
ity and extensibility by utilising reflection and runtime type information
to build a dynamic index of interceptors.

The Java language allows programmers to obtain handles to methods dy-
namically at runtime via the Method class, these may then be invoked with
dynamically typed parameters. Combining this feature with Java anno-

30

tations, markers in a program’s source code which carry metadata about
the token they are attached to, allows clients to clearly and concisely mark
interceptor methods in their code by adding the Intercepts annotation
to a method, such as this example from our framework GUI code, which
intercepts and handles screen redirect requests:

@Intercepts(Redirect.class)
public void setContent(Redirect next) {

viewHistory.push(this.currentView);
setView(next.view);
currentView.getContent().requestFocus();
currentView.getContent().addKeyListener(new KeyboardInputHandler(dispatcher));

}

On the framework side, we create a Map of event types to ordered lists of in-
terceptor object →interceptor method tuples. An ordered list is necessary
to support interceptor priorities, which clients indicate via the optional
@Priority annotation. When the framework wishes to broadcast an event
to registered interceptors, we can efficiently look up the list of interested
interceptors using the event type as a Map key. Once the list of intercep-
tors is obtained, they are executed in priority order, with NORMAL being the
default priority.

While this approach to the interceptor pattern results in more concise code
and less initial effort from both clients and framework developers, it is not
perfect. Because of the dynamic nature of reflection method calls, valuable
compile-time type checks are lost; clients must take care not to mismatch
their interceptor method signatures (for example, by forgetting to add the
context object as a parameter) or the system will throw a reflection excep-
tion.

31

CHAPTER 6: TESTING

6.1 UNIT TESTING WITH JUNIT4

Unit tests are important as they provide automated testing for a project.
Automated tests are invaluable in system testing as they save a large amount
of development time. An automated test can also be ran numerous times
and on a schedule. They are also useful as they can see if new code can
cause the program to fail unexpectedly

6.1.1 Entity Creation Test

This unit test asserts that the entity component system is able to add and
remove components form the database. The test creates a health compo-
nent and an Entity database. It then adds the health component to the
database and asserts it exists. It then removes it and asserts that it was
removed

32

public class EntityCreationTest {
private final EntityDatabase eDB;
private final EntityId testEntity;
private final HealthComponent testHealth;

public EntityCreationTest() {
eDB = new EntityDatabase();
testEntity = new EntityId();
testHealth = new HealthComponent(100);

}

@Test
public void entityCreator() {

eDB.addComponentToEntity(testEntity, testHealth);
assertTrue(eDB.getEntitiesForComponent(HealthComponent.class)

.containsKey(testEntity));

eDB.removeComponentFromEntity(testEntity, HealthComponent.class);
assertFalse(eDB.getEntitiesForComponent(HealthComponent.class)

.containsKey(testEntity));
}

}

Listing 13: Entity creation test source

6.1.2 Interceptor Test

This test asserts the Dispatcher can correctly responds to a dispatch re-
quest. The test creates a testEvent and sets 3 different responders. One
high,one medium and one low priority request. The request is then sent to
the dispatcher. The test then asserts that the dispatch calls the the events
in order of priority (High,Medium,Low).

33

public class DispatcherTest {
private static class TestEvent {}

private boolean responded = false;
private Dispatcher d = new Dispatcher();

private final ArrayList<Level> calledOrder = new ArrayList<>();

public DispatcherTest() {
this.d.register(this);

}

@Intercepts(TestEvent.class)
public void normalResponder(TestEvent tE) {

this.calledOrder.add(Level.NORMAL);
responded = true;

}

@Test
public void testDispatcherMethodCalled() {

this.d.dispatch(new TestEvent());
assertTrue(responded);

}

@Intercepts(TestEvent.class)
@Priority(Level.HIGH)
public void highResponder(final TestEvent e) {

this.calledOrder.add(Level.HIGH);
}

@Intercepts(TestEvent.class)
@Priority(Level.LOW)
public void lowResponder(final TestEvent e) {

this.calledOrder.add(Level.LOW);
}

@Test
public void testDispatcherMethodCalledInOrder() {

this.d.dispatch(new TestEvent());

final List<Priority.Level> expected = Arrays.asList(
Level.HIGH,
Level.NORMAL,
Level.LOW

);

assertEquals(expected, this.calledOrder);
}

}

Listing 14: Dispatcher Test Source

34

6.1.3 Component Consumer Test

This test ensures that an entity consumer correctly maps over a particular
component type. The before list creates an entity ID and a health compo-
nent. The entity is then added to the beforelist. Then the process method
is called and the health component is mapped to the afterlist . The test
then asserts that the before list and after list are equal.

public class ComponentConsumerTest {
private final EntityDatabase eDB;
private final EntityId eID;
private final HealthComponent health;
private final ComponentConsumer<HealthComponent> eP;
private List<EntityId> beforeList, afterList;

public ComponentConsumerTest() {
this.eDB = new EntityDatabase();
this.eID = new EntityId();
this.health = new HealthComponent(100);
this.eP = this::process;
this.beforeList = new ArrayList<>();
this.afterList = new ArrayList<>();

}

private void createBeforeList() {
for (int i = 0; i < 5; i++) {

EntityId eID = new EntityId();
this.eDB.addComponentToEntity(eID, health);
beforeList.add(eID);

}
}

private void process(HealthComponent health, EntityId eID) {
afterList.add(eID);

}

@Test
public void entityProcessTest() {

createBeforeList();
eDB.applyConsumer(eP, HealthComponent.class);
assertTrue(afterList.containsAll(beforeList););

}
}

35

6.1.4 Command Test

This test is done to test that the command pattern is implemented cor-
rectly. The test requires we create a command test class much like in the
main project which implements the ActionCommand Interface. The exe-
cute of this Command is to change the boolean value of commandPressed
from true to false or false to true. The test also requires an interceptor
and a dispatcher to process the CommandEvent. With all this the main
test simply dispatches the test event and asserts that when the execute is
called the commandPressed value is changed from false to true.

public class CommandPatternTest {
private static class CommandEvent { }

private Dispatcher d = new Dispatcher();
private boolean commandPressed = false;

public CommandPatternTest() {
this.d.register(this);

}

@Intercepts(CommandEvent.class)
public void commandResponder(CommandEvent cE) {

CommandTest test = new CommandTest();
test.execute();

}

@Test
public void commandPatternTest() {

this.d.dispatch(new CommandEvent());
assertTrue(commandPressed);

}

class CommandTest implements ActionCommand {
@Override
public void execute() {

commandPressed = !commandPressed;
}

}
}

Listing 15: Command test source code

36

CHAPTER 7: EVALUATION

7.1 KNOWN ISSUES

7.1.1 Java Generics Type Erasure

Regrettably, there is no clean way in the Java programming language to
determine the type of a generic type variable at runtime. To work around
this issue, we require clients to specify the generic type variable both at
build-time, as a generic type, and at run-time, as a parameter of type
Class. An example of this issue can be found in our JsonRepository con-
structor. The third-party JSON library must know the type of object to
serialise at runtime, but we are serialising a generic ArrayList of ’M’; the
type of M is erased by the Java language at runtime. Clients must pass a
Class<M> so that we may determine what concrete object to serialise.

// JsonRepository<M> –- Class<M> is the type of M.
public JsonRepository(Class<M> modelType, String fileName) {

// File loading code elided
Type modelListType = TypeToken

.getParameterized(ArrayList.class, modelType)

.getType();

// Load JSON
ArrayList<M> data = this.gson.fromJson(json, modelListType);

}

// In client code
Repository<UserAccount> users = new JsonRepository(UserAccount.class, "users.json");

Listing 16: Java generic type erasure means that clients must pass the concrete class of a
generic type variable when constructing repositories

37

7.1.2 Save Game Loading

In our ECS implementation, components are stored in tables keyed by
their class name. To allow users to save and load their games, we allow the
ECS state database to be restored from a ’snapshot’ memento object, these
snapshots are stored in JSON files. Because the actual component objects
stored in the database are abstract Component references, there is no way
for the deserialisation code to generically determine what component to
instantiate.

Map<Class<? extends Component>, Map<EntityId, Component» index;

Listing 17: Internal format of the ECS Database — a map from component classes to
component tables

We solve this problem by writing a custom JSON deserialiser to deserialise
ModelAdapter<EntityDatabase>. As shown in the listing below, this cus-
tom deserialiser determines which concrete component class to instantiate
based on the key class name.

38

public ModelAdapter<Snapshot> deserialize(JsonElement jsonElement, Type type,
JsonDeserializationContext context)

EntityDatabase d = new EntityDatabase();
JsonElement table = jsonElement.getAsJsonObject()

.getAsJsonObject("wrapped")

.getAsJsonObject("savedState")

.getAsJsonObject("componentsToEntities");

Map<String, Map<EntityId, Component» index = new HashMap<>();

table.getAsJsonObject().entrySet().forEach(entry -> {
Map<EntityId, Component> componentTable;
Class<?> key = Class.forName(entry.getKey());
assert(componentClass.isAssignableFrom(Component.class));

Type mapType = TypeToken.getParameterized(HashMap.class, EntityId.class, key)
.getType();

componentTable = context.deserialize(entry.getValue(), mapType);
index.put(entry.getKey(), componentTable);

});

d.componentsToEntities = index;
return ModelAdapter.of(d.saveState());

}

Listing 18: Custom GSON deserialiser used for our save game loading

While this approach works, it causes a host of architectural problems. This
deserialiser is currently placed inside the EntityDatabase class, coupling
the ECS code to the IO/persistence layer (worse, to a concrete persis-
tence layer!). It also has several security implications, as our only security
check is an assert that the input class implements the Component interface.
To properly implement this feature, a robust way of storing component
classes should be written, perhaps as a custom serialiser.

7.2 SUITABILITY

In general, we believe that this project fulfils its functional and non-functional
requirements well. We have tuned our implementation details carefully
using data gathered from the JVisualVM profiler to achieve the best pos-
sible performance. Our use of generic code and Java functional interfaces

39

allows both framework maintainers and client developers to easily extend
our implementation to new use cases, while being flexible enough to adapt
to a wide range of potential domains.

7.3 POTENTIAL IMPROVEMENTS

7.3.1 LambdaMetafactory and Reflection Calls

In Java, reflection method calls are very slow[3]. An alternative to re-
flection method calls is the newly-introduced LambdaMetafactory, a class
primarily intended for compiler authors which can dynamically gener-
ate lambda expressions. Migrating our dispatcher to use the invokable
CallSite instances generated by the LambdaMetafactory would signifi-
cantly speed up our dispatcher.

7.3.2 EnumMap

EnumMap is a special case of the more general Java Map classes where all of
the keys are entries in an enum. EnumMaps can be faster than regular maps
because they are implemented internally as simple arrays. Refactoring our
ECS index to us an EnumMap instead of a regular Java map keyed by com-
ponent class name could significantly speed up our game processing code.
This would, however, require client developers to create and maintain an
enumeration of component types.

40

CHAPTER 8: CONTRIBUTION

8.1 LINES OF CODE PER CLASS

64 ./src/invaders/framework/auth/AuthController.java
12 ./src/invaders/framework/auth/LoginAttemptEvent.java
54 ./src/invaders/framework/auth/LoginView.java
15 ./src/invaders/framework/auth/RegisterEvent.java
61 ./src/invaders/framework/auth/RegisterView.java
27 ./src/invaders/framework/Controller.java

119 ./src/invaders/framework/data/JsonRepository.java
15 ./src/invaders/framework/data/Model.java
33 ./src/invaders/framework/data/ModelAdapter.java
36 ./src/invaders/framework/data/Repository.java
6 ./src/invaders/framework/ecs/Component.java
6 ./src/invaders/framework/ecs/ComponentCombiner.java

13 ./src/invaders/framework/ecs/ComponentConsumer.java
196 ./src/invaders/framework/ecs/EntityDatabase.java
31 ./src/invaders/framework/ecs/EntityId.java
10 ./src/invaders/framework/ecs/Prototype.java
71 ./src/invaders/framework/event/Dispatcher.java
14 ./src/invaders/framework/event/Intercepts.java
19 ./src/invaders/framework/event/Priority.java
37 ./src/invaders/framework/event/Responder.java
85 ./src/invaders/framework/Framework.java
13 ./src/invaders/framework/games/FrameTickEvent.java
45 ./src/invaders/framework/games/GameApplication.java
59 ./src/invaders/framework/games/GameCanvas.java
9 ./src/invaders/framework/games/GameStartEvent.java

21 ./src/invaders/framework/games/GameView.java
30 ./src/invaders/framework/games/ResourceCatalog.java
31 ./src/invaders/framework/input/KeyboardInputHandler.java
10 ./src/invaders/framework/input/KeyInputEvent.java
41 ./src/invaders/framework/swingui/JPanelFormBuilder.java

41

101 ./src/invaders/framework/swingui/MainWindow.java
14 ./src/invaders/framework/swingui/PopupMessageEvent.java
15 ./src/invaders/framework/swingui/Redirect.java
40 ./src/invaders/framework/swingui/SwingView.java
32 ./src/invaders/framework/user/AccountView.java
39 ./src/invaders/framework/user/DashboardView.java
51 ./src/invaders/framework/user/GamesListView.java
73 ./src/invaders/framework/user/SaveGameView.java
93 ./src/invaders/framework/user/UserAccount.java
21 ./src/invaders/framework/user/UserController.java
22 ./src/invaders/game/entity/AlienFactory.java
48 ./src/invaders/game/entity/CollisionComponent.java
78 ./src/invaders/game/entity/CollisionSystem.java
33 ./src/invaders/game/entity/DamageComponent.java
46 ./src/invaders/game/entity/DefaultAlienFactory.java
44 ./src/invaders/game/entity/FastAlienFactory.java
36 ./src/invaders/game/entity/HealthComponent.java
32 ./src/invaders/game/entity/HealthSystem.java
7 ./src/invaders/game/entity/PlayerComponent.java

11 ./src/invaders/game/entity/ScoreComponent.java
24 ./src/invaders/game/entity/ScoreSystem.java
42 ./src/invaders/game/entity/TankAlienFactory.java
11 ./src/invaders/game/entity/TeamComponent.java
25 ./src/invaders/game/GameResources.java
11 ./src/invaders/game/input/ActionCommand.java
20 ./src/invaders/game/input/CommandFire.java
18 ./src/invaders/game/input/CommandMoveLeft.java
17 ./src/invaders/game/input/CommandMoveRight.java
23 ./src/invaders/game/input/CommandQuit.java
22 ./src/invaders/game/input/CommandSaveGame.java
40 ./src/invaders/game/input/InputSystem.java
34 ./src/invaders/game/ProjectileFactory.java
38 ./src/invaders/game/render/AnimationSystem.java
51 ./src/invaders/game/render/RenderSystem.java
63 ./src/invaders/game/render/SpriteComponent.java
36 ./src/invaders/game/render/VelocityComponent.java
16 ./src/invaders/game/render/WobbleComponent.java
9 ./src/invaders/game/ScoreEvent.java

183 ./src/invaders/game/SpaceInvadersGame.java
29 ./src/invaders/game/ui/GameOverEvent.java
14 ./src/invaders/game/ui/GameQuitEvent.java
51 ./src/invaders/game/ui/MenuScreens.java
46 ./test/CommandPatternTest.java
65 ./test/ComponentConsumerTest.java
68 ./test/DispatcherTest.java

42

38 ./test/EntityCreationTest.java
3013 total

Lines were counted using the shell command find . -name ’*.java’ |
xargs wc -l [1]

8.2 LINES OF CODE PER CONTRIBUTOR

We determined the lines of code inserted and deleted per-author using the
following shell command [2]:

git log –author="_Your_Name_Here_"
–pretty=tformat:

–numstat | awk
'{ add += $1; subs += $2; loc += $1 - $2 }
END {

printf "added lines: %s,
removed lines: %s,
total lines: %s\n", add, subs, loc }'

Results:

Added Deleted Total
Liam 9391 5992 3399
Eric 784 134 650
Daniel 1077 72 1005
Kyran 616 130 486

8.3 REPORT

Report Contribution
Liam 25%
Eric 25%
Daniel 25%
Kyran 25%

43

BIBLIOGRAPHY

[1] Peter Elespuru. How to count all the lines of code in a directory recur-
sively? URL: https://stackoverflow.com/a/1358573/3121161.

[2] jkschneider. Git - Is there a way to view the number of lines committed
by Author? URL: https://stackoverflow.com/questions/2731283/
git-is-there-a-way-to-view-the-number-of-lines-committed-
by-author/23832962#23832962.

[3] Oracle. Trail: The Reflection API. URL: https://docs.oracle.com/
javase/tutorial/reflect/index.html.

[4] L. Power et al. UL E-Store. URL: https://gitlab.com/liamp/invaders.

44

https://stackoverflow.com/a/1358573/3121161
https://stackoverflow.com/questions/2731283/git-is-there-a-way-to-view-the-number-of-lines-committed-by-author/23832962#23832962
https://stackoverflow.com/questions/2731283/git-is-there-a-way-to-view-the-number-of-lines-committed-by-author/23832962#23832962
https://stackoverflow.com/questions/2731283/git-is-there-a-way-to-view-the-number-of-lines-committed-by-author/23832962#23832962
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://gitlab.com/liamp/invaders

	Requirements
	Use Case: Client Developers
	Use Case: Customers
	Quality Attributes
	Performance
	Extensibility
	Flexibility

	Design
	Entity-Component-System
	Entities
	Components
	Systems

	Interceptors
	Context Objects
	Concrete Interceptors
	Dispatchers

	Game Saves
	User Input
	Invoker
	Command Design Pattern

	Prototype
	Abstract Factory
	Builder

	Architecture
	Framework
	Game

	Implementation
	Interceptor Dispatcher
	CS4125 Code
	Space Invaders Game
	Score System

	UI Framework

	Added Value
	Repositories
	Reflection-based Interceptors

	Testing
	Unit testing with JUnit4
	Entity Creation Test
	Interceptor Test
	Component Consumer Test
	Command Test

	Evaluation
	Known Issues
	Java Generics Type Erasure
	Save Game Loading

	Suitability
	Potential Improvements
	LambdaMetafactory and Reflection Calls
	EnumMap

	Contribution
	Lines of Code Per Class
	Lines of Code Per Contributor
	Report

