
Sabre
A reusable GPU Voxel Renderer

Author
Liam Power · 16148983

Supervisor
Dr. Chris Exton

Final Year Project Report — B.Sc. Computer Games Development

Computer Science and Information Systems
University of Limerick

Abstract

With the rise in power of consumer graphics hardware, it becomes possible
to simulate and render increasingly large and complex virtual environments
in games. Voxel-based technology — first introduced as a means to visualise
medical and scientific datasets — is an innovative alternative to contemporary
polygon-based techniques for representing massive game worlds that can be
modified in real-time.

A significant problem faced by game programmers when integrating voxels
into their product is the overhead of developing a robust voxel storage and
rendering scheme, as naive storage of voxels can consume huge amounts of
memory. In place of developing such a solution in-house, developers may
instead choose to utilise a library to provide the voxel storage and rendering
technology.

This project aims to deliver such a library. Through the use of specialised data
structures and the exploitation of the inherently parallel nature of voxel data,
this project provides drop-in support for massive voxel scenes that can be
viewed at a very high level of detail using modern OpenGL graphics program-
ming techniques. In addition to this core library, this project also provides an
example viewer application demonstrating the capabilities of the library.

Since this project is designed for easy integration, the core voxel library does
not rely upon any external dependencies, other than the OpenGL graphics
API for interfacing with the graphics hardware.

1

Declaration

This work is submitted in partial fulfillment of the requirements for the de-
gree of Bachelor of Science in Computer Games Development. I declare that,
except where otherwise indicated through appropriate reference and quota-
tion, this report is entirely my own work and has not been submitted to any
other academic institution, or for any other academic award at this University.

Liam Power
May 5th, 2020.

2

Acknowledgements

I would first like to thank my supervisor, Dr Chris Exton, for his patience
and support throughout this project. I would also like to thank the faculty at
the Computer Science and Information Systems department, in particular Dr
Patrick Healy, without whom I would most certainly be still trying to draw my
first triangle.

Thanks are very much due to Dr. Samuli Laine and Dr. Tero Karras; without
their pioneering research in sparse voxel octrees, this project would never
have been possible.

I would also like to thank my friends Jack, Eric and Jonathan, and my brother
Cathal for their assistance in testing the software portion of this project.

Finally, I would like to thank my parents; my mother for her unfailing kind-
ness and encouragement, and my father for passing on his knowledge of pro-
gramming. Without their influence, this project would have never even been
conceived.

3

Contents

Abstract 3

Acknowledgements 3

1 Introduction 7
1.1 Context . 7

1.1.1 Polygon Rendering . 7
1.1.2 Voxels . 7
1.1.3 Code Structure . 8

1.2 Motivation . 9
1.3 Objectives . 11

2 Research 13
2.1 Technologies . 13

2.1.1 Programming Language 13
2.1.2 Graphics API . 14
2.1.3 Tools . 15

2.2 Mathematics . 15
2.3 Data Storage . 16
2.4 Rendering Methods . 17

2.4.1 OpenGL Compute Shaders 17
2.4.2 Ray-Box Intersection . 18

2.5 Polygon Renderer Prototype 18

3 Voxel Data Storage 20
3.1 Octrees . 20
3.2 The Sparse Voxel Octree . 21

3.2.1 SVO Blocks . 22
3.2.2 SVO Nodes . 23
3.2.3 Far Pointers . 24

3.3 SVO Construction . 25

4

3.3.1 Sampler Functions . 25
3.3.2 Determining the Scene Scale 27
3.3.3 Building the SVO . 27

4 Dynamic Edits 29
4.1 Client API . 29
4.2 Inserting Voxels . 30

4.2.1 Determining the Child Octant 30
4.2.2 Creating a New Branch 31

4.3 Deleting Voxels . 31
4.4 Node Reallocation . 32

5 Importing Meshes 34
5.1 The GLTF File Format . 34
5.2 Importing Polygon Meshes . 35

5.2.1 Mesh Loading . 36
5.2.2 Building the Triangle Index 37
5.2.3 Building the SVO . 37

6 Rendering 38
6.1 Renderer Pipeline . 38

6.1.1 Compute Shader Background 38
6.1.2 Transferring Occupancy Data 40
6.1.3 Pre-render setup . 40
6.1.4 Voxel Rendering . 40
6.1.5 Displaying the final image 41

6.2 Ray-Box Intersection Algorithm 41
6.3 Raycasting Algorithm . 42

6.3.1 Push - Entering a child voxel 42
6.3.2 Advance - Examining a Sibling Voxel 47
6.3.3 Pop - Exiting a Voxel . 49

6.4 Rendering Leaf Data . 50
6.4.1 Sparse Textures . 51
6.4.2 Alternative Approaches 52

7 Viewer Application 54
7.1 Controls . 54
7.2 Features . 54

8 Evaluation 56
8.1 Achieved Objectives . 56

5

8.1.1 Performance . 56
8.1.2 Scene Detail . 57
8.1.3 Arbitrary Scene Modifications 57
8.1.4 Educational Value . 58

8.2 Potential Improvements . 58
8.2.1 SVO Block Streaming . 58
8.2.2 Generic Voxel Attributes 58
8.2.3 Support for Dynamic Linking 59
8.2.4 Texture Sampling . 59

8.3 Conclusion . 59

6

Chapter 1: Introduction

1.1 Context

1.1.1 Polygon Rendering

Since the 1990s, polygons (more specifically, triangles) have been the domi-
nant method of representing geometry in games. A flat surface can be very
efficiently encoded by a polygon as the rendering engine only needs to store
the vertices at the corners of the triangles making up the surface. The surface
is rendered by filling in the pixels between vertices.

While polygons are an excellent representation of perfectly flat surfaces, their
efficiency decreases when surface details such as bumps, cracks and ridges are
added. This is because, for each new surface feature added, more polygons
are required to represent that feature accurately. Although techniques such as
normal mapping can help to provide the illusion of details on a flat surface,
changing the surface geometry may incur expensive re-calculation, making
real-time editing of extremely large meshes very difficult.

1.1.2 Voxels

The word voxel is derived from the term Volume Pixel. Just as a pixel repre-
sents a single colour value in a regular two-dimensional bitmap grid, a voxel
represents a single point in three-dimensional space with some associated
data values, such as colour, light or temperature. Like pixels, voxels do not
store their positions. Instead, the position of any particular voxel can be de-
rived implicitly from its grid location.

Voxels may be assembled into scenes, much like Lego® pieces. By using a very
large number of very small voxels, creators can produce extremely detailed
scenes (see figure 1.2). These voxel scenes may then be arbitrarily modified
by both developers and end-users. This concept is demonstrated in the 2011

7

video game Minecraft, where the entire game world is a continuous voxel
scene. Players may build any structure they like out of voxels, and the game
world may be edited at any point by players.

Figure 1.1: Voxels assembled into a staircase shape, with a single voxel highlighted
in red [28]

NovaLogic Inc., developers of the Comanche games, were one of the earli-
est adopters of voxel technology. NovaLogic’s voxel engine functioned by
raycasting a voxel grid to display realistic terrain. In 2011, voxels gained
global recognition with the release and explosive success of Minecraft. Since
then, voxels have been applied to more ambitious game projects, such as Hello
Games’ No Man’s Sky [21] and Media Molecule’s Dreams, where players can
shape completely new games entirely out of voxels using the Dreams engine
[8].

1.1.3 Code Structure

The project’s codebase is split into three modules. The sabre module is an
executable program which functions as a test-bed and debug viewer for voxel
objects. The sabre_svo module contains all of the code necessary to gener-
ate and manipulate voxel objects. The sabre_render module handles data
synchronisation between the CPU and GPU using the OpenGL graphics API.
These latter two modules comprise the Sabre "library" — the main artifact
that will be distributed to client developers. The viewer module is intended
only as a demonstration of the core library’s feature set. An optional module,
sabre_import, allows client developers to convert polygon mesh assets into
fully voxelised scenes.

This project is written in C++, but makes minimal use of the C++ STL
and object-oriented programming. To allow developers to use this project
from other programming languages it is necessary to use C linkage, using the
extern "C" construct.

The primary distribution mechanism intended for this project is as source

8

Figure 1.2: Voxels can do more than just low-resolution blocky assets; this Indone-
sian statuette, composed of roughly 150,000 voxels, was rendered with this project.
The 3D model used to produce this scene was sourced from the Morgan McGuire
Computer Graphics Archive [20]

code. This allows clients to simply compile the library into their own projects,
eliminating complex and error-prone library and environment setup. This
distribution model is made possible by removing dependencies wherever pos-
sible, and bundling required dependencies, such as the cgltf library.

1.2 Motivation

The ability to easily store and render massive scenes and game worlds which
players can edit at will allows for the evolution of many interesting and novel
game dynamics. For example, in a real-time strategy game, players might
design and build fortified bases or might dig through the terrain to launch
a surprise attack on their opponent. A pre-packaged software library which
allows developers to quickly add such a feature to their game could save game
studios considerable amounts of time and money.

When compared to polygon meshes, voxels have some interesting advantages
for game developers wishing to build large, detailed environments which
players can edit at will. Firstly, it is quite straightforward to edit an object
composed of voxels; one simply edits the voxel data in the same fashion as
pixels are edited within an image.

It is also very simple to procedurally generate voxels since they are just points

9

in 3D space. For example, a Perlin Noise function may be used to generate a
field of voxels resembling realistic terrain features (this is the approach used
by Minecraft to generate its game levels [9]). This property of voxels saves
huge amounts of time compared to hand-sculpting landscapes using polygon
meshes.

Figure 1.3: Two screenshots of a voxel engine by NewSoundGames[25]. The image
on the left shows a zoomed-in view of the floor crack shown in the rightmost image

By storing voxels in a space-efficient data structure, such as a Sparse Voxel
Octree, it is possible to create highly detailed scenes. Figure 1.3 shows a
voxel engine capable of representing surface detail at sub-millimetre preci-
sion. This paves the way for innovative software solutions beyond games;
3D modellers might use this technique to build very high resolution models,
or medical imaging devices might use this technique to produce extremely
detailed images.

Voxel ray-casting also comes with some desirable advantages. Since a ray is
fired for every pixel on the screen, geometry which does not appear within
the camera’s field of view is never processed. This means that frustum culling
is effectively free with ray casting. Ray-casting also belongs to a class of prob-
lems termed embarrassingly parallel, meaning that it is a problem extremely
well suited to parallelisation. This means that ray-casting is an excellent can-
didate for general-purpose GPU (GPGPU) programming. In this project, I
utilise an OpenGL compute shader to perform the voxel rendering.

Finally, this project serves as an excellent vehicle to learn about modern high-
performance rendering techniques and GPU programming; two areas of com-
puter science that have always interested me.

10

Figure 1.4: Bust of Serapis rendered with ray-casting. The 3Dmodel used to produce
this scene was sourced from the Morgan McGuide Computer Graphics Archive [20]

1.3 Objectives

The overarching goal of this project is to produce a lightweight SDK that will
allow client developers to support very large, highly detailed virtual environ-
ments that can be edited in real-time. To achieve this, there are four main
features that must be implemented:

1. Support for extremely detailed scenes. I intend to support this feature
through the use of specialised data structures for voxel storage (see
Chapter 3 for a discussion on voxel storage schemes). In concrete terms,
the final artifact should be capable of rendering scenes to a voxel reso-
lution of 1 millimetre.

2. Support for very large scenes. Again, this feature is largely dependent
on the choice of data structure for voxel storage.

3. High performance. Fast rendering and responding quickly to user input
is crucial in video games to maintain the illusion of fluid motion. Exclud-
ing client errors or exceptional circumstances (for example, the host ma-
chine does not support hardware accelerated rendering), Sabre should
complete all rendering operations within 33 milliseconds. This corre-
sponds roughly to a frame-rate of thirty frames-per-second. Milliseconds-
per-frame can be measured using Nvidia’s Nsight graphics debugger
(see section 2.1.3).

11

4. Allow arbitrary modifications to the scene at run-time.

12

Chapter 2: Research

Voxel technology is currently an area of active research within the computer
graphics community— a Google Scholar search for the term "voxel rendering"
turns up nearly 80,000 results1 — so there is no shortage of literature to draw
from.

2.1 Technologies

2.1.1 Programming Language

The choice of programming language and environment has an enormous im-
pact on the project’s life cycle. Since this project is designed for use in inter-
active video game engines, a language supporting compilation to native code
was mandatory. Additionally, as this project will need to carefully orches-
trate data flow between the CPU and GPU, support for control over low-level
implementation details such as data alignment and memory layout was also
required.

With these concerns in mind, I evaluated three programming languages: C,
C++ and Rust. Though Rust boasts some very attractive features such as
guaranteed memory safety and a powerful type system, it is still a very new
programming language, with a very small userbase in the commercial game
programming community. C++ is a strong candidate, however it is generally
more difficult to integrate a C++ class library with other languages than a
pure C function library because many languages (Lua, for example) expect
foreign code to conform to a C API. C has the advantage of simplicity, but I
would prefer to avail of the better type-checking built into most C++ com-
pilers for this project.

After evaluating each of the above programming languages, I have chosen
to implement this project in C++, but exporting a C API. This means that

1As of January 6th, 2020

13

the library code should be usable from other programming languages which
expect a C API, while still allowing me to take advantage of C++’s more
ergonomic features, such as raw string literals and operator overloading.

2.1.2 Graphics API

An essential component of any high-performance graphics application is the
API used to issue GPU instructions. This is an important decision to make for
the project as the code required to perform some operation may look consid-
erably different between separate graphics APIs, so the choice of API has a
large impact on the final codebase.

Excluding manufacturer-specific options, there are four main graphics APIs
used to write high-performance GPU code today:

• OpenGL, a cross-platform and community-driven API originally devel-
oped by Silicon Graphics Inc. and now managed by the Khronos Group.
Modern versions of the OpenGL API support advanced low-level tech-
niques such as compute shaders and shader storage buffers required to
render large amounts of voxels on the GPU. In OpenGL the graphics card
may be programmed using GLSL, a high level programming language
with special support for computer graphics operations.

• Direct3D (D3D), a proprietary graphics API developed byMicrosoft. Part
of the DirectX family of SDKs, D3D offers a high-level API with features
roughly comparable to OpenGL along with its own GPU programming
language, HLSL. As it is controlled entirely by Microsoft, Direct3D is
limited to the Windows and XBox platforms.

• Vulkan, a cross-platform API recently introduced by the Khronos group
in 2016 as an alternative to OpenGL. The primary motivation for intro-
ducing a new API was to provide application programmers more fine-
grained control over the GPU’s actions, and to take better advantage of
the massively parallel nature of GPU systems . Vulkan allows for ex-
tremely granular control over an application’s resource usage, though
this requires significantly more management code to be written. Vulkan
shaders are compiled offline into an assembly-like intermediate repre-
sentation called SPIR-V. As such, Vulkan shaders may be written in ei-
ther GLSL or HLSL but an appropriate compiler is needed to transform
the shader source into SPIR-V assembly.

• Metal, a proprietary API developed by Apple Inc. Metal was introduced

14

in 2014 for much the same reasons as Vulkan, and is quite similar in
design. Metal uses its own shading language called "the Metal shading
language".

In the above options, there is a clear distinction between OpenGL and Di-
rect3D, and Vulkan and Metal. These latter two APIs were designed much
later than OpenGL and Direct3D, and more closely resemble how modern
GPUs function. As such, they can potentially provide much greater perfor-
mance and control over GPU resources, but at the cost of code complexity
[29].

When selecting a graphics API for use in this project, I basedmy choice primar-
ily on how familiar I was already with each API. Since I was already familiar
with modern OpenGL programming, and OpenGL code can run on more plat-
forms than Direct3D code, I chose to use OpenGL as the graphics API for this
project. Although I would have liked to explore the newer Vulkan API, I do
not have easy access to Vulkan-compatible hardware.

2.1.3 Tools

Since I was developing primarily on the Windows operating system, I chose
to use Microsoft WinDBG as my debugger. WinDBG is a source-level debugger
which supports custom scripting, disassembly and time-travel debugging.

Traditional debuggers can only examine code running on the CPU. As this
project relies heavily on GPU code to render the voxel scene, a tool capable of
debugging GPU code was required. Graphics debuggers are more closely tied
to the underlying hardware than CPU debuggers; NVidia and ATI both offer
products which only work on the respective manufacturer’s hardware. Since I
own a NVidia graphics card, I chose NVidia’s Nsight Graphics as my graphics
debugger.

To streamline development across multiple machines, and to have safe, reli-
able code storage I chose Git as my version control system, with the project
being hosted on GitLab.com.

2.2 Mathematics

Since one of my primary goals for this project is to become more proficient
with 3D game engine programming, I have decided to write the entirety of
the mathematics code myself. Having some previous experience in this task
already, I began by porting several maths utilities I had previously written

15

Figure 2.1: A screenshot of the viewer application running under Nsight Graphics

in C++ to this project. This ad-hoc math library contains some very simple
vector operations (dot product, cross product, normalisation formula), some
matrix operations (vector-matrix product, matrix-matrix product) and some
miscellaneous functions specifically related to graphics programming such as
the perspective projection formula.

My primary reference for mathematics was Lengyel’s Foundations of Game
Engine Development, Volume 1: Mathematics [16]. I also relied heavily on my
Computer Graphics II course notes for developing the perspective projection
code [10].

I also utilised quaternions for handling camera rotations in the prototype ren-
derer, and I plan to do the same in the final viewer application. A quaternion
can encode a rotation more efficiently than a matrix because it only requires
four floating-point numbers to store the rotation as opposed to the sixteen
required by a matrix. I used Van Verth’s excellent overview to gain an under-
standing of the theory behind quaternion rotation, in particular the quater-
nion multiplication formula and how to rotate a vector by a quaternion [27].

2.3 Data Storage

When starting this project, I knew I would require a data structure capable of
storing massive amounts of voxel data in an efficient form. Initially, I consid-
ered classical pointer-based Octrees. Octrees are a type of hierarchical data
structure used to efficiently represent 3D space by discarding large empty re-
gions. They were first introduced by Meagher in 1980 [22]. In their most

16

basic form, octrees use eight child-pointers to link parent and child nodes
together. Laine and Karras improved on this design by encoding child data
inside parent nodes; their design uses eight bit masks to determine whether
or not a particular node has children, and if its children are leaf nodes. This
removes the need to store leaf nodes at all.

2.4 Rendering Methods

Techniques available for rendering voxel data can be split into two broad
categories: polygon-based methods and volumetric methods. Polygon-based
methods represent the scene to be rendered as a collection of voxels in mem-
ory, but convert it to a polygon mesh before rendering. Once the scene has
been converted into a polygon mesh, it can then be rendered in the same way
as any other polygon. There are many algorithms available for transforming
a field of voxels into a polygon mesh, one of which I initially planned to use
in this project: Marching Cubes [17].

Though I considered using polygon rendering for this project, I decided not
to proceed with it because the rendered polygon meshes will inherit all of the
limitations of existing polygon geometry while simultaneously incurring the
memory overhead of voxel storage. Using polygon rendering would require
re-creating the polygon mesh of a voxel object every time it was changed.
Instead I chose to use ray-casting for this project — a volumetric rendering
approachwhich operates by shooting a ray into the voxel scene and examining
all voxels intersected by the ray. The output image is produced by casting a
ray for each pixel on the screen.

Laine and Karras introduce a voxel ray-casting algorithm in their Efficient
sparse voxel octrees paper [15]. I have based my GLSL code on their approach.

2.4.1 OpenGL Compute Shaders

Since ray-casting is a highly parallelisable problem, it is well-suited to GPUs.
I chose to use OpenGL compute shaders to perform the ray-casting due to
the fact that I was already familiar with the GLSL programming language.
To learn the specifics of compute shader programming, I began by reading
an excellent overview by Mike Bailey [4]. I also used the official OpenGL
reference pages to look up specific API details while programming [13].

To set up a proper rendering pipeline, I used the approach detailed by Bur-
jack in the online tutorial article Ray tracing with OpenGL Compute Shaders

17

(Part I) [6]. This involved first creating an OpenGL image object to represent
the output image. For each square "tile" of some small number of pixels, a
compute shader is executed to fire a ray into the scene and perform the ac-
tual ray-casting computations. If the ray intersects voxel geometry, the tile is
filled with colour. The final image is produced by executing the same compute
shader many times for all of the output image’s constituent tiles. Finally, this
image is rendered onto a quadrilateral polygon mesh to produce the scene
render.

2.4.2 Ray-Box Intersection

A crucial component of any ray-casting engine is how to determine when a
ray intersects a voxel. I began by implementing Tavian Barnes’ intersection
algorithm [5] in GLSL. Some time later, I came across another version of the
same algorithm by Majercik et al. [19] which uses GLSL’s built-in vector math
functions to more concisely express the same operation.

2.5 Polygon Renderer Prototype

The earliest development work on this project began with a prototype voxel
renderer which transformed voxel data into polygon meshes using Lorensen
and Cline’s Marching Cubes algorithm. This prototype allowed me to get
familiar with low-level OpenGL programming.

This prototype showcases one of the core strengths of voxel-based technology:
the ability to automatically generate geometry. Figure 2.2 shows a sphere built
entirely out of voxels. This sphere was generated by filling all voxels which
satisfied the following implicit surface function:

x2 + y2 + z2 − r2 = 0

The remaining voxels are considered "air" or empty.

This prototype stored all voxel data in a simple array, with individual voxels
addressed by their 3D coordinates. Albeit simple, this approach was, fun-
damentally, a poor choice for the final implementation because of its poor
scalability. Storing all of the voxel data in a single flat array places a hard
limit on the number of voxels available to represent the scene.

18

Figure 2.2: A screenshot from the prototype polygon renderer showing a sphere
built from voxels

19

Chapter 3: Voxel Data Storage

All voxel engines must address the question of how to store and process voxel
data. For any reasonably large scene with a high level of detail, the number
of voxels required to represent such a scene can grow very large. Implemen-
tations must also devise a strategy for handling large, empty regions of space;
an ideal solution would not store voxels that do not contain interesting ge-
ometry.

The most basic voxel storage strategy is to store each individual voxel in a flat
array. This approach was used by Minecraft [23] 1. Although this scheme has
the advantage of being very simple to implement, and provides O(1) voxel
access and update times, the amount of memory required to store the voxel
world is linear in the number of voxels. This restricts games using this tech-
nique to a low resolution "blocky" style. To represent more detailed worlds,
some way of compressing voxel data is required.

3.1 Octrees

The octree, first developed in 1980 by Meagher [22], is a hierarchical data
structure used to efficiently partition three-dimensional space. An octree be-
gins as a cube encompassing all of the available world space with dimension
d. This cube is then recursively partitioned into eight identical child cubes of
dimension d

2 (see figure 3.1 for an example). Children are only themselves
partitioned if geometry is contained within their bounds. By only storing vox-
els which contain real geometry, octrees allow large swathes of empty voxels
to be cut away, considerably reducing the amount of memory required to store
a voxel scene.

In classical octrees, each octree node contains eight pointers to it’s children,
with leaf nodes having eight null child pointers. While this structure is more

1Technically, Minecraft uses a paged array of flat arrays termed "chunks". Chunks are
paged in and out depending on where the player travels in the game world.

20

Figure 3.1: Example of an octree. Sourced from Wikipedia under the CC-BY-SA
license

space-efficient than flat arrays, there is still room for improvement. On a
64-bit architecture with 8 byte pointers each octree node would consume 64
bytes of storage just for the child pointers. Laine and Karras introduced the
Sparse Voxel Octree in 2010 [15] as an improvement over traditional octrees.

3.2 The Sparse Voxel Octree

This project stores scene voxel data in a Sparse Voxel Octree (SVO) data struc-
ture. Unlike traditional octrees, SVOs do not store eight child pointers for each
node. Instead, two eight-bit masks are stored in each node; one to indicate
that there is geometry resident in each child node corresponding to each bit
position, and another to indicate whether or not a particular child is a leaf.
This means that leaf nodes need not be stored at all, reducing the storage
space required for a voxel scene even further than regular octrees.

The implementation of the sparse voxel octree in this project closely follows
the ideas laid down by Laine and Karras. Throughout the project, the follow-
ing convention is used for numbering cube octants: 0 to 7 increasing in X,
then Y, then Z. Figure 3.2 shows an example.

At the highest level, the SVO tree data structure used to store the entire scene
in Sabre consists of a list of fixed-size blocks of octree nodes. Only non-leaf and
non-empty nodes are actually stored; Laine and Karras’ methodology stores
all of the information required to construct a leaf node in its parent.

21

Oct 0 Oct 1 (Obscured)

Oct 2 Oct 3

Oct 4 Oct 5

Oct 7

Oct 6

Figure 3.2: Convention used when numbering octants. Octant 1 is to the right of
octant 0

3.2.1 SVO Blocks

Since Sabre is designed to handle very large voxel scenes, it would be infeasi-
ble to attempt to store all of the SVO nodes required for a scene contiguously
in memory. Instead, Sabre uses a singly-linked list of svo_block structures
(see listing 1). Blocks are fixed-size chunks of memory that store a predeter-
mined number of nodes, controlled by the SVO_ENTRIES_PER_BLOCK constant.

struct svo_block

{

usize NextFreeSlot;

svo_block* Prev;

svo_far_ptr FarPtrs[SVO_FAR_PTRS_PER_BLOCK];

svo_node Entries[SVO_ENTRIES_PER_BLOCK];

};

Listing 1: SVO block structure. SVO_ENTRIES_PER_BLOCK is a constant that deter-
mines how many entries are stored within each block

Blocks function similarly to stacks. The NextFreeSlot field is the stack pointer,
denoting an offset to the next available memory address that can hold a new
svo_node structure. In the case that all slots are used up, a new block is
transparently allocated and the two are linked together via the Prev pointer.

This stack-based approach is used for performance reasons; allocating each
node entry on the heap would introduce the considerable overhead of a call
to malloc or similar every time a new node was inserted (these allocations
would also have to be freed one at a time). With millions of nodes, this strat-
egy would be unacceptably slow. With the block-based approach, a call to
the system allocator is only required each time a new block is required, and

22

individual node allocations are very fast as they only require (in most cases)
incrementing NextFreeSlot.

SVO blocks also store a fixed number of far_ptr instances (see listing 3).
These are used in case child references for an individual node overrun block
boundaries.

3.2.2 SVO Nodes

All voxel geometry in Sabre is fundamentally stored in a svo_node structure
(see listing 2 and figure 3.3). The OccupiedMask field is used to test if this
particular node contains any geometry at all, where each bit at position i

determines if there is geometry resident in the ith child octant of this node.
Each bit in the LeafMask field indicates whether or not the ith child octant is
a leaf node — this means that storage of leaf nodes becomes unnecessary as
leaf nodes can be inferred by looking at the leaf mask of their parent.

Leaf MaskOccupied Mask

Far Bit

Child Pointer
15 Bits 1 Bit 8 Bits 8 Bits

Figure 3.3: Data layout inside an individual 32-bit SVO entry

union alignas(4) svo_node

{

struct

{

uint8_t LeafMask;

uint8_t OccupiedMask;

uint16_t ChildPtr;

};

uint32_t Packed;

};

Listing 2: Source of the svo_node structure

Leaf Mask

The LeafMask field is an 8-bit unsigned integer used to determine which of
a node’s sub-octants are to be considered leaf voxels (i.e. that there are no

23

further child nodes in that octant). Each bit position i in the mask corresponds
to the ith child octant.

Occupied Mask

The OccupiedMask field is an 8-bit unsigned integer used to determine which
of a node’s sub-octants have geometry contained within the bounds of their
enclosing cube. An occupied octant may or may not need to be subdivided
further; the LeafMask field encodes this information. Each bit position i in
the mask corresponds to the ith child octant.

Child Pointer

The ChildPtr field is a 15-bit unsigned integer representing the offset of a
node’s first non-leaf child in it’s SVO block (see section 3.2.1). In certain
cases, a node’s first child may end up in a different block, in which case this
field instead stores a far pointer offset. This far pointer offset points to the far
pointer, in the parent node’s block, which contains the location of the block
containing the child node and the offset of the child node within that block.

struct sbr_far_ptr

{

uint32_t BlkIndex;

uint32_t NodeOffset;

};

Listing 3: Source of the far_ptr structure. This is used to support node references
that span blocks; the Block pointer points to the child node’s containing block and
BlockIndex is the offset of the child node inside the containing block

3.2.3 Far Pointers

Given a large enough octree, it is likely that at some point a node’s child will
end up allocated in a different block. If this happens, the node’s child pointer
must be converted into a far pointer (see listing 3). Far pointers store a block
index, denoting the block a node’s child resides in, and a block offset, denoting
where in that block the child is stored.

Far pointers are stored and allocated in almost exactly the same way as SVO
nodes; the FarPtrs member of the block struct stores a stack of far pointers,
with the head of the stack represented by NextFarPtrSlot. New far pointers
are allocated by simply incrementing NextFarPtrSlot.

24

If it has been determined that a node is to be allocated outside its parent’s
block, then that node must have its far bit flag set (see figure 3.3). A new far
pointer is then allocated from the parent node’s block and the parent node’s
child pointer bits are used to store an index into the far pointers array.

Note that far pointers are only required for the first of a node’s children. This
is because children are always stored sequentially; if a node’s children were
to straddle a block boundary, there would be no need for a far pointer because
the block containing the other children is guaranteed to be the parent block’s
Next pointer.

3.3 SVO Construction

Clients can create SVO scenes by calling the SBR_CreateScene function, the
prototype of which is described in listing 4. The library relies on client-
supplied sampler functions to determine the shape and data attributes of the
scene. Clients can also customise the level of detail (corresponding to the
octree’s depth) and the scene scale.

extern sbr_svo*

SBR_CreateScene(uint32_t ScaleExponent,

uint32_t MaxDepth,

shape_sampler* ShapeSampler,

data_sampler* NormalSampler,

data_sampler* ColourSampler);

Listing 4: Prototype for the SVO scene construction function. The sampler parame-
ters provide occupancy, normal and colour data respectively

3.3.1 Sampler Functions

The library builds SVO scenes by recursively calling a client-supplied function
pointer which returns a boolean indicating whether or not there is geometry
resident between two opposing points. Voxel attribute data, such as colours
and normals, are created in a similar manner, with the user-defined functions
returning the attribute value for a particular leaf voxel. Allowing the client to
specify their own sampler functions affords a significant degree of flexibility
and control to the user — in the distribution package, this method is used
to construct both generated scenes (the "Sphere" scene) and imported mesh
scenes.

25

The client provides these sampler functions by creating instances of _sampler
structures; shape_sampler structs provide occupancy data, while data_sampler
structs provide colour and normal data. These structures are detailed in list-
ing 5

typedef sbrv3 (*data_fn)(sbrv3, const sbr_svo* const, const void* const);

typedef bool (*shape_fn)(sbrv3, sbrv3, const sbr_svo* const, const void* const);

struct shape_sampler

{

shape_fn SamplerFn;

const void* const UserData;

};

struct data_sampler

{

data_fn SamplerFn;

const void* const UserData;

};

Listing 5: The sampler types. The UserData pointer is supplied by the clients at
sampler initialisation and is read-only.

Along with providing their own function pointers for samplers, client devel-
opers can also store a pointer to arbitrary data in the sampler struct, which is
then made available to the sampler functions at SVO creation time. This exists
to allow clients to interact with external data sources from within the sampler
functions; for example, the polygon mesh importer stores the mesh triangle
index in the UserData pointer of its shape sampler. The user data pointers are
read-only, helping to enforce the concept of the sampler functions as "pure"
functions that do not affect the external environment.

There is some contention surrounding the use of void pointers in the C++
community, and not without good reason — void pointers throw away valu-
able type information, and rely instead on unsafe casting to transform void
pointers into usable types. I considered several safer alternatives for use in
this project, namely providing the user data as a template parameter or using
functor style classes as the samplers. Ultimately, I decided that the inclusion
of these practices would break C compatibility of the API, a trait I was not
willing to sacrifice.

26

3.3.2 Determining the Scene Scale

The client-supplied parameters ScaleExponent and MaxDepth together con-
trol the size of the world region represented by the SVO, and the size of the
individual voxels.

The scale of the world (i.e. the dimensions of the root octree node) are cal-
culated by computing 2ScaleExponent. This method is used in place of a more
straightforward approach where the client supplies the root node dimensions
directly for two reasons: first, it ensures that all dimensions throughout the
octree will be powers of two, meaning that efficient bit-shift operations can
be used in tree construction and rendering. Second, it allows for much larger
and more detailed scenes to be created.

The MaxDepth parameter controls the maximum depth of the octree; larger
values will produce more detailed scenes with smaller leaf voxels, but at the
cost of increased construction time.

If ScaleExponent is less than MaxDepth, voxel dimensions will start to be-
come fractional values. This is a problem, since the rendering and construc-
tion code requires all voxel dimensions be integers to make use of fast integer
math operations. We constrain all voxel dimensions to integers by introduc-
ing a scale bias when ScaleExponent is less than MaxDepth. Coordinates in
(possibly fractional) world space must first be transformed by this scale bias
before they can be applied to the octree scene. Likewise, point coordinate
obtained from traversing the octree must have the inverse of this scale bias
applied before they can be useful in world space.

The scale bias is calculated by subtracting ScaleExponent from MaxDepth. For
example consider an octree with ScaleExponent 5 (meaning the maximum
dimensions of the root node are 25 = 32) and a MaxDepth of 7. Without the
scale bias, this octree would produce the following voxel dimensions, in order:
16, 8, 4, 2, 1, 0.5, 0.25. To eliminate the fractional value, we must introduce a
multiplication by 27−5 = 22 = 4.

3.3.3 Building the SVO

Once the scene scale has been determined, the library can begin construct-
ing the octree. Construction begins at depth 1, where the library determines
which of the root’s child octants need to be further subdivided by calling the
shape_sampler function pointer provided by the client. This process contin-
ues recursively until the sampler function no longer evaluates to true when

27

passed a child octant’s corner coordinates, or MaxDepth is reached.

0 0 1 0

0 1 0 1

Root (Depth 0)

Root Quadrant C (Depth 1)

0 0 1 1

Occupancy Mask

A B

D

B sub-quadrant (Depth 2)

Figure 3.4: Layout of nodes inside a block. In memory, nodes are organised in a
depth-first fashion. In this example, A, B and C are leaf nodes.

28

Chapter 4: Dynamic Edits

An important feature of voxel-based engines is their ability to make arbitrary
modifications to the scene at runtime. Minecraft is well-known for this feature,
allowing players to insert and delete bricks at any point to build up their own
creations, like a virtual LEGO set.

Since this project uses an SVO data structure to store voxel data, insert and
delete operations become more complex, requiring re-building of tree levels
in certain cases.

4.1 Client API

The core library supports scenemodifications through the functions SBR_InsertVoxel
and SBR_DeleteVoxel. The prototypes for these functions are shown in listing
6. Both functions take a pointer to the scene to be modified and a vector spec-
ifying the position at which the modification should happen as parameters.
These API functions are not thread safe and may allocate memory (though
only in the comparatively rare case that there is no space inside the last block
of the entire tree data structure).

// Delete voxel at position `VoxelP`

void SBR_DeleteVoxel(sbr_svo* Tree, sbrv3 VoxelP);

// Insert voxel at position `VoxelP`

void SBR_InsertVoxel(sbr_svo* Tree, sbrv3 VoxelP);

Listing 6: Prototypes for the insert/delete functions exposed to clients

In addition to these functions, the helper functions SBR_GetNearestFreeSlot
and SBR_GetNearestLeafSlot can be used to compute the VoxelP parameters
more intuitively. These utility functions calculate the closet valid insert/delete
position from a point along a given direction. They operate by firing a ray, con-
structed from the given origin and direction parameters, into the scene and

29

returning the first voxel this ray hits (or, in the case of GetNearestFreeSlot,
the last empty octant the ray passed through before it hit a voxel).

4.2 Inserting Voxels

To insert a leaf voxel at some position P , we must first locate the deepest
node containing P . This is accomplished by recursively selecting the child
octant containing P and then jumping to that corresponding child, starting
at the root node. The deepest node is reached when there is no child node
corresponding to the octant containing P . If the deepest node happens to be
at the maximum tree depth, then we can simply mark the octant containing P
as a leaf. The more common case is that the deepest node is not at the correct
depth, so a new branch must be created in the tree.

4.2.1 Determining the Child Octant

This project uses a consistent scheme for assigning 3-bit codes to octants,
described by figure 3.2; these codes range from 0 to 7. The octant code for a
position P with respect to a given origin can be determined by first partitioning
space into eight regions along the X , Y and Z Cartesian planes. We observe
that, when formatted as zyx , the bits in an octant code corresponding to a
particular axis are set when a point lies on the positive side of that axis plane.

As an example, consider the point (1, 0, 0) which lies on the positive side of
the X plane with respect to the origin point (0, 0, 0). Since this point lies on
the positive side of the X plane, the x bit should be set in its octant code. This
process is repeated for the Y and Z axes to build up the complete octant code.
Listing 7 shows how this procedure is implemented in C code.

static inline svo_oct

GetOctantForPosition(sbrv3 P, sbrv3 ParentCentre)

{

sbrv3u G = sbrv3u(GreaterThan(P, ParentCentreP));

return (svo_oct) (G.X + G.Y*2 + G.Z*4);

}

Listing 7: Computing the child octant number for a position P relative to the parent
octant centre. The GreaterThan function produces a vector of either 1 or 0 values
(corresponding to the boolean results of a component-wise comparison). These in-
teger values can then be combined into an octant number ranging from 0 to 7

30

4.2.2 Creating a New Branch

If the deepest node we can reach is not at themaximum tree depth, then a new
branchmust be created, reaching from the deepest node wewere able to reach
to the maximum depth. To do this, a new parent node must first be inserted
to function as the root of this branch — see section 4.4 for details on this
process. Next, we must continuously allocate new nodes, setting the octant
containing P as occupied at each one, until the maximum depth is reached, at
which point a leaf node is inserted. Figure 4.1 illustrates an example of this
scenario, with the blue level indicating the reallocated sibling node, and the
green levels indicating the newly-created nodes.

Insert position

Octant marked as parent

Created tree levels

Figure 4.1: State of the SVO before (left) and after (right) a voxel has been inserted.
Note the first inserted level (blue) and the levels following (green) which must be
created and added into the tree

4.3 Deleting Voxels

The process for deleting a voxel is similar to the insertion process. The tree
is descended to the deepest level or until a leaf voxel is encountered. If the
traversal reaches the deepest level and the supplied position corresponds to
a leaf voxel, the bits in the parent voxel’s LeafMask and OccupiedMask corre-
sponding to that voxel’s octant are cleared.

If the traversal encounters a leaf voxel that is not at the deepest level, this
leaf voxel must be recursively split into a parent voxel and seven leaf voxels
one level down. Figure 4.2 shows an example of this situation. This situation
also calls for reallocation of this newly-created branch’s ancestor, in a similar
manner to voxel insertions.

31

Position to dele...

Leaf converted to newly-created branch
Leaf

Figure 4.2: Example of a leaf voxel being recursively split up when it contains a
to-be-deleted voxel.

4.4 Node Reallocation

Certain mutating operations require creating new branches through the tree
(for example, inserting a very small voxel into a large empty node). Since
sibling nodes are stored sequentially, inserting or deleting a branch requires
inserting or deleting a sibling node at some level. To avoid a costly reorganisa-
tion of the entire block (or even worse, the entire tree), sibling modifications
are implemented by copying the modified sibling array to the end of the block
and updating the parent node’s child pointer to this new location.

If there is no more space left at the end of the block, a new block must be
allocated from system memory and linked to the tree. If this happens, care
must be taken to ensure that any sibling node copied into the new block has
their child pointer converted to a far pointer in the old block pointing into the
new one.

This process can only occur once, since even though their locations have
changed the siblings’ child pointers remain valid, keeping the structure of
the tree intact.

32

Root
A
B
C

R

A B CX

X

A B CX

R

A B C

D

D

Root

A
X
B
C

D

D

Want to insert X after A

A
B
C

Siblings copied to end of block

Orphaned nodes

Figure 4.3: Illustration of the sibling reallocation process. Node X is to be inserted as
a sibling to A. A and its current siblings are copied to the end of the SVO data block
with X inserted at the correct place. Finally, the child pointer of R is updated to reflect
the new location, leaving the previous copies of A, B and C orphaned. Note that node
D remains unmoved since the child pointer from the copied A remains valid

33

Chapter 5: Importing Meshes

Although advancing all the time, tools for authoring voxel-based content are
still in their infancy when compared to polygon mesh authoring tools. Addi-
tionally, no contemporary voxel content creation tools can export to the SVO
format required by this project. Since it is likely that any client of this library
could already have a significant number of existing polygon mesh assets, it
would be helpful to have some way of automatically converting these assets
into SVO scenes for use with this library.

Includedwith the product distribution is an optionalmodule called sabre_import
which provides support for converting polygon mesh files in the GLTF format
into fully modifiable SVO scenes. There are several example meshes included
with the distribution, sourced from the Morgan McGuire Computer Graphics
Archive [20]. Figure 5.1 shows an example of a mesh voxelised at a high level
of detail using this importer.

The polygonmesh loading API is exposed to clients through the SBR_ImportGLBFile
function, which takes a file name and a max depth level as parameters.

5.1 The GLTF File Format

GLTF1 is a relatively new asset storage file format developed by the Khronos
group in 2015 [12]. GLTF files store a description of the data they contain
(for example, how many vertices there are and what format these vertices are
encoded in) in a JSON string. The actual binary data, containing the mesh
vertices, colours, normals, etc. is stored directly after this JSON string (in the
case of .glb files) or in a separate file (in the case of .gltf files).

I initially evaluated several 3D model file formats, such as the Stanford PLY
format or the Wavefront OBJ format, before settling on GLTF for use in this
project. The driving reason for picking GLTF was the fact that GLTF files store

1GL Transmission Format

34

Figure 5.1: The famous Stanford bunny model, voxelised to a 10243 resolution grid

the mesh data in a tightly packed binary format, drastrically reducing the file
size compared to This project uses the cgltf C library [14] to load .glb files
into a list of triangles which are then voxelised into the final SVO scene. I
initially evaluated several other polygon file formats but settled on GLTF.

5.2 Importing Polygon Meshes

Once the client has called SBR_ImportGLBFile, the import process begins by
loading the GLTF file with CGLTF. This results in a cgltf_mesh* handle, which
can be used to load the data associated with the mesh file, such as the vertex
positions. Vertices, colours and normals are then loaded into a large buffer
of tri_data structs (described in listing 8). An index is then built mapping
positions to colours, normals and boolean occupancy values. The purpose
of this index is to provide a fast way for sampler functions to look up the
occupancy or attribute values at a particular point, to facilitate efficient tree
building.

35

struct tri3

{

sbrv3 V0;

sbrv3 V1;

sbrv3 V2;

};

struct tri_data

{

tri3 T;

sbrv3 Normal;

sbrv3 Colour;

};

Listing 8: The datatypes used to store mesh triangle data in this project. Each trian-
gle has one associated colour and normal value.

5.2.1 Mesh Loading

Once the basic mesh has been loaded by CGLTF, the program then begins pars-
ing the triangle data into a list of tri_data structs (listing 8). GLTF meshes
can be composed of a variety of primitives; the importer in this library is only
concerned with the triangle primitive type. For each primitive, there will
usually also be a set of indices, possibly compressed, which describe the or-
dering of primitives. The first step in the actual mesh loading process is to
decode these indices into a temporary buffer, as shown in listing 9.

cgltf_size IndexCount = Prim->indices->count;

uint32_t* IndexBuffer = (uint32_t*) malloc(IndexCount * sizeof(uint32_t));

// Copy the indices into the index buffer.

for (cgltf_size Elem = 0; Elem < Prim->indices->count; ++Elem)

{

IndexBuffer[Elem] = (uint32_t) cgltf_accessor_read_index(Prim->indices, Elem);

}

Listing 9: Decoding the primitive indices into a temporary buffer. This buffer is freed
after the positions for this particular primitive block have been loaded

Once the indices have been loaded, the mesh’s position attributes must be
loaded (note that here, the term "attribute" refers to a different CGLTF-specific
concept than the term "attribute" elsewhere in this document). Position at-

36

tributes are first loaded into a temporary buffer, in the same manner as in-
dices. The final step is to loop through every triplet of indices and construct
a tri3 instance using the corresponding position values. Triangle normals
are computed here, since not all meshes may store the pre-computed normals
and the computation has negligible effect on the overall import time. The end
result of this process is a tri_buffer containing all the mesh triangles and
their normals.

5.2.2 Building the Triangle Index

As described in section 3.3, SVOs are constructed using client-provided pure
sampler functions, which provide the occupancy and attribute data for par-
ticular world points. In the mesh importer, it would be too expensive to have
these sampler functions iterate through the entire triangle list for each invo-
cation, so we first construct an index mapping colour, normal and occupancy
values to points. The samplers, then, are reduced to simple, constant-time
lookups.

In the interests of time-saving, these index data structures are implemented
using the STL containers std::unordered_map (for the colour and normal
indexes) and std::unordered_set (for the occupancy index). To build the
index, each triangle in the triangle list is recursively checked against octree
node bounds using a SIMD triangle intersector based on the Akenine-Möller
triangle intersection formula [1]. Octree nodes that do intersect a triangle are
added to the occupancy index. If this process reaches the octree leaf depth,
the node centres are also added to the colour and normal indices.

5.2.3 Building the SVO

Finally, once the respective indices have been built, the SVO construction pro-
cess is kicked off using the SBR_CreateScene function. The scene scale is
determined by selecting the closest integer log 2 of the maximum mesh di-
mension (conveniently stored by GLTF files).

The samplers supplied to the octree builder are, thanks to the index building
process, extremely simple. Samplers need only check if the supplied position
values have entries in the indexes, an operation defined to have amortized
O(1) complexity.

37

Chapter 6: Rendering

Contemporary polygon-based games rely almost exclusively on the specialised
triangle rasterisation hardware found in modern GPUs to transform a list of
triangles into an image. Unfortunately, since individual voxels do not carry
any information about the scene’s overall shape it is not possible to use this
approach with voxels in their native format and, as previously discussed, it
would be too memory-consuming to convert the voxel scene into a polygon
representation prior to rendering.

Ray-casting is an alternative method of rendering well-suited to voxel data.
Ray-casting operates by firing a ray into the voxel scene for every pixel of the
screen. If the ray hits a leaf voxel, the pixel is coloured. Since this process
is very computationally expensive, it is necessary to harness the processing
power of modern graphics hardware to perform many ray-casts in parallel. In
Efficient Sparse Voxel Octrees, Laine and Karras introduce an efficient algorithm
for rendering sparse voxel octrees; the renderer written for this project is a
GLSL implementation of this algorithm.

6.1 Renderer Pipeline

Figure 6.1 illustrates the high-level rendering architecture of this project.
Voxel data is generated on the CPU and then transferred to the GPU, where
it is rendered using a compute shader raycaster.

6.1.1 Compute Shader Background

The term shader refers to an executable program that runs on the GPU rather
than the CPU. Originally applied to very simple programs that performed
highly specific tasks such as calculating pixel colours, the term has since come
to mean any program that executes on the GPU even if that program has noth-
ing to do with computer graphics.

38

Camera Matrix

SVO Depth

SVO ScaleU
N
IF
O
RM

D
AT
A

SVO Block 0

SVO Block 1

SVO Block N

SV
O
D
AT
A

Indexed Leaf Data

CPU

SVO SSBO
SPARSE LEAF TEXTURE

CO
M
PU

TE
SH

AD
ER

S

OUTPUT TEXTURE

SCREEN

GPU

Figure 6.1: The rendering architecture

In OpenGL, compute shaders operate slightly differently to the graphics-specific
vertex and fragment shaders. Shader invocations are organised into work
groups — multi-dimensional "blocks" of shader execution units. For example,
all the elements of a two-dimensional array may be processed in parallel by
invoking a compute shader with a work group of the same dimension as the
array. The GPU will execute the same compute shader for every work group
item.

By representing the screen viewport as a two-dimensional array of texels, a
compute shader may be used to compute all of the texel colours in parallel.
This serves as the input of the raycasting algorithm.

In this project, the screen viewport is represented by an OpenGL texture ob-
ject. This texture serves as the output of the renderer compute shader kernel.

39

6.1.2 Transferring Occupancy Data

Voxel occupancy data defines the layout of the sparse voxel octree, indicating
whether or not a particular point in space contains a voxel. Voxel occupancy
data begins life on the CPU, where it is stored in large blocks linked together
by pointers (see section 3.2.1 for a treatment of CPU-side voxel data storage).
In order to render this voxel data, these SVO blocks must be transferred into
GPU accessible memory as fast as possible. In this project, SVO occupancy
data is stored on the graphics card as large memory buffers called "Shader
Storage Buffer Objects" (SSBOs) which are directly accessible from the ray-
casting compute shader kernel. Two SSBOs are used to store the voxel octree
data: one for the occupancy information, and one for the far pointers (see
section 3.2.3).

The process of transferring the occupancy data is entirely opaque to clients of
the library. Clients simply call the SBR_CreateRenderData function to obtain
a sbr_render_data handle that can be used by the library to access these
SSBOs at a later time. This is by design, since the less clients rely on OpenGL-
specific implementation details the easier it becomes to port the software to
other graphics APIs, Direct3D for example.

6.1.3 Pre-render setup

Before the system can begin actually rendering the SVO data, some prelim-
inary setup work needs to take place each frame. This essentially consists
of computing the view transform matrix and transferring this to the graph-
ics card. The auxiliary struct sbr_view_data stores the camera orientation
matrix and position vector and is later passed into the SBR_DrawRenderData

function, which kicks off the render to the GPU.

6.1.4 Voxel Rendering

Once the pre-render setup has been completed, the compute shader raycast-
ing kernel is executed for each pixel of the render output image. In this kernel,
the ray’s origin and direction are determined by first computing the world-
space coordinates of the kernel’s pixel on the near projection plane; figure
6.2 shows how these coordinates are calculated. The ray’s direction is ob-
tained by computing the normalised vector going from the eye through this
projected pixel.

Section 6.3 gives comprehensive overview of the raycasting algorithm used

40

View Origin (World Space)

-z

Origin.x - (ScreenSize / 2)

Origin.z - Near*Dir

Projection Plane

Origin.x + (ScreenSize / 2)

Figure 6.2: Illustration of how the screen projection plane is computed given the eye
coordinates and view direction in world space

in this project, which is a GLSL implementation of the process described by
Laine and Karras. During the main rendering loop, the raycasting compute
shader is invoked. The GPU will execute one compute shader kernel for each
pixel of the output image. Compute shaders are invoked with the OpenGL
call glDispatchCompute.

6.1.5 Displaying the final image

Once the GPU has finished executing the compute shaders, the traditional
polygon rendering pipeline is used to present the finished image to the screen.
This involves covering the entire viewing window with a flat polygon and
then attaching the rendered texture to this polygon. Extremely simple "no-
op" fragment and vertex shaders are then used to present this image to the
screen.

6.2 Ray-Box Intersection Algorithm

The SVO data structure organises space into a hierarchical cube grid. In order
to traverse this grid and render leaf voxels it is necessary to determine where
a particular camera ray intersects a cube in space.

Any point along a ray R can be expressed with the following equation:

Rp + tRd

Where Rp is the ray origin, and Rd is the ray’s direction. The scalar value t

41

indicates how far along the ray the point in question lies. When a ray intersects
a three-dimensional cube, the t -values correspond to the intersection of the
ray with the six planes that make up the cube.

y max

y min

x min x max

tmax(x)

tmax(y)

tmin(x)

tmin(y)

Figure 6.3: Illustration of the ray-cube intersection points on the six cube planes

This project uses Majercik et al’s GLSL ray-box intersection code to very effi-
ciently compute the tmin and tmax values for a given cube.

6.3 Raycasting Algorithm

Laine and Karras outlined the basic algorithm for SVO raycasting in their orig-
inal paper. The rendering code for this project is based upon their conceptual
algorithm.

The regularity of the SVO data structure allows very efficient raycasting of
large voxel data sets because large regions of empty space can be quickly tra-
versed. As defined by Laine and Karras, the voxel raycaster uses three primary
operations: Push (traverse deeper into a parent voxel), Advance (process the
next voxel of the same depth) and Pop (exit a parent voxel). These operations
are shown in figure 6.4

6.3.1 Push - Entering a child voxel

When the raycaster encounters a non-empty voxel, it will first check if the
voxel is a leaf. Leaf voxels do not require any further traversal and can be
coloured immediately, terminating the ray for this pixel. If the voxel is oc-
cupied but not a leaf, we must descend into the SVO hierarchy and examine
next node the ray enters — this is the push operation.

42

Figure 6.4: Illustration of a ray travelling through the octree. The traversal path is
A, B, C, D, E, F, G

Since we may need to return to a voxel from deeper down in the tree (this
is the pop operation, see section 6.3.2) we maintain a stack of parent voxels
that can be restored if needed.

Determining the Child Octant

Determining which octant the ray is currently intersecting is done similarly to
the CPU-side code in listing 7. Listing 10 shows the GLSL translation of this
function, which makes use of the built-in efficient boolean vector operations
in GLSL.

uint GetOctant(in vec3 P, in vec3 ParentCentreP)

{

vec3 G = vec3(greaterThan(P, ParentCentreP));

return G.x + G.y*2 + G.z*4;

}

Listing 10: GLSL source of the GetOctant function

Determining the Child Node

All SVO nodes contain a child pointer field that indicates the location of the
first non-leaf child voxel. To obtain a given node’s child, we must first check
if the first child is located within the same block as the parent (this does not
necessarily imply that the particular child we are looking for is in the same
block as its parent). To do this we can inspect the far-flag bit of the current
node’s child pointer bitfield. If this flag is not set, we can interpret the child
pointer field as a direct offset into the parent’s block. If the far flag is set, we

43

must look up the block index of the first child and skip to that block.

Listing 12 shows the complete source code for the child node lookup proce-
dure. The block index of the parent node Blk is passed as an inout parameter
because it must be both read from and written to by GetNodeChild. This is
so that the caller can receive an updated current block index in case the child
is located in a block different to that of the parent. Note that this can occur
even if the parent’s first child is located inside the same block as the parent,
as illustrated by figure 6.5.

Block N Block N + 1

0x0001 0b00001101 0b000000000

Oct 0 Oct 2 Oct 3

Far Child Pointer Occupied Mask Leaf Mask

Figure 6.5: Child pointers always point to the first non-leaf child (siblings are stored
sequentially). In this example, the parent node has three occupied child octants (0,
2 and 3). The first child resides in the same block as its parent, so the child pointer
value can be interpreted as an offset into block N.

Since siblings always reside side-by-side in memory, it is relatively simple to
compute the index of a particular child when given the index of the first child.
To find the index of a child node relative to the first child, we first compute
a mask of non-leaf octants. We then count the number of set bits lower than
the octant we are trying to locate. This produces an offset from the first child.

uint ChildPtr = (Parent & CHILD_PTR_MASK) >> 16;
uint OccBits = (Parent & OCCUPIED_MASK) >> 8;
uint LeafBits = (Parent & LEAF_MASK);
uint NonLeafMsk = OccBits & (~LeafBits);
uint SibMsk = (1 << Oct) - 1;

uint ChildOffset = bitCount(NonLeafMsk & SibMsk);

Listing 11: Calculating the offset of a child octant Oct

Storing the Child Context

The raycaster maintains a stack of parent voxels which track the ray’s progress
through the SVO structure. The voxel stack is implemented as a GLSL array
of the st_frame structure outlined in listing 13

44

uint GetNodeChild(in uint Parent, in uint Oct, inout uint Blk)
{

uint ChildPtr = (Parent & CHILD_PTR_MASK) >> 16;
uint OccBits = (Parent & OCCUPIED_MASK) >> 8;
uint LeafBits = (Parent & LEAF_MASK);
uint NonLeafMsk = OccBits & (~LeafBits);
uint SibMsk = (1 << Oct) - 1;

uint ChildOffset = bitCount(NonLeafMsk & SibMsk);

// Check if we need to look up a far pointer for this child
if ((Parent & FAR_PTR_BIT_MASK) == 0)
{

uint Child = Nodes[Blk*EntriesPerBlk + ChildPtr + ChildOffset];

Blk += (ChildPtr + ChildOffset) / (EntriesPerBlk);

return Child;
}
else
{

// Find the far ptr associated with this node. To do this, we need to compute
// the byte offset for this block, then index into that block's far ptr
// list for this node.
uint FarPtrIndex = (Parent & CHILD_PTR_MASK) >> 16;
uint FarPtrBlkStart = Blk*FarPtrsPerBlk;
far_ptr FarPtr = FarPtrBuffer[FarPtrBlkStart + FarPtrIndex];

// Skip to the block containing the first child
Blk = FarPtr.BlkIndex;
uint BlkStart = Blk*EntriesPerBlk;

// Skip any blocks required to get to the actual child node
Blk += (FarPtr.NodeOffset + ChildOffset) / EntriesPerBlk;

uint Child = NodeBuffer[BlkStart + FarPtr.NodeOffset + ChildOffset];

return Child;
}

}

Listing 12: Complete GLSL source code for the GetNodeChild function

For each push operation at some depth d, a stack entry is created at index
d − 1. This can then be restored by a later pop operation.

45

struct st_frame
{

uint Node;
int Scale;
vec3 ParentCentre;
uint BlkIndex;

};

Listing 13: GLSL source of the st_frame structure stored in the voxel rendering
stack.

46

6.3.2 Advance - Examining a Sibling Voxel

If the current octant is not occupied, we must advance the current octant to
whichever octant of the same scale the ray enters next. To do this, the current
octant must be advanced along whichever axes the ray exits the current octant
through, i.e. the tmax values.

If the current octant is represented with an integer ranging from 0 – 7, with
bit indices corresponding to the x , y and z axes respectively, we can determine
the next octant’s integer representation by flipping the bits for which the t -
value for that axis matches the tmax value. Figure 6.6 shows a two-dimensional
example: the current octant is set to 10 and the tmax value corresponds to the
x-axis, thus we should flip the x bit in this example. By the equals() GLSL
intrinsic, we can exploit the fast parallel hardware of the GPU to perform the
comparison for all three axes at once. The result of this comparison is a mask
that can be XORed with the current octant to produce a candidate next octant
(we must still check if the next octant is valid given the direction of the ray;
if this is not the case we must execute the Pop operation).

10 11

00 01

Current Oct Next Oct
tMax and tMax(x)

tMax(y)

tMax Mask
tMax(x) tMax(x) tMax(x)tMax(y)

t Values

0 1

equals()

xor mask

Figure 6.6: Creating a xor-mask for computing a candidate for the next octant

Listing 14 shows the GLSL source code for the GetNextOctant function. The
code makes use of some GLSL-specific features to avoid costly branching.
First, the equals GLSL intrinsic is used to compute a boolean vector repre-
senting which components of tMaxes are equal to the tMax value. This is then
multiplied by the OCT_BITS constant vector (1, 2, 4) which is used to shift the
values of XorMsk3 into the correct bit positions. Finally, the values of XorMsk3
are added together to produce the scalar XOR mask that will perform the
correct bit-flips on CurrentOct

47

uint GetNextOctant(float tMax, vec3 tMaxes, uint CurrentOct)

{

// if tMax == tValues.x then NextOct ^= 1;

// if tMax == tValues.y then NextOct ^= 2;

// if tMax == tValues.z then NextOct ^= 4;

uvec3 XorMsk3 = uvec3(equals(vec3(tMax), tMaxes));

XorMsk3 *= OCT_BITS;

uint XorMsk = XorMsk3.x + XorMsk3.y + XorMsk3.z;

return CurrentOct ^ XorMsk;

}

Listing 14: GLSL source of the GetNextOctant function

48

6.3.3 Pop - Exiting a Voxel

Whenever the raycaster traverses a parent voxel, but does not actually inter-
sect leaf geometry, the raycaster must exit that parent voxel and proceed to
the next voxel of that parent’s scale. This is the pop operation.

Oct B

Oct A.A

Figure 6.7: Ray exiting octant A.A and proceeding to octant B. Note the change of
scale.

To determine what scale voxel the ray enters next, we must examine the path
taken from the ray’s starting position through the octree up to this point. By
restricting the octree to only positive space, we can determine a path taken
through the octree by looking at the binary representation of each coordinate
of the ray’s current position. For example, in figure 6.7, the current node cen-
tre position might be (8, 8), while the ray’s current position might be (16, 27).
Consider the binary representations of these positions in figure 6.8

16

27

0 0 0 1 0 0 0 0

0 0 0 1 1 0 1 1

128 64 32 16 8 4 2 1
X

Y

(1, 1)

Figure 6.8: Deriving an octree path from the bit indices of the ray’s current position.
In this two dimensional example, it can be seen that the ray is in quadrant 3 (top-
right) at scale 16.

49

By associating each bit position i in these binary numbers with an octree scale
value, we can determine which octant the ray has passed through at which
a particular scale. We can repeat this process for the centre position of the
ray’s current octant, giving a path through the octree to the current octant.
By comparing these bit vectors, we can determine the scale of the next octant
to process. In the example above, the highest differing bit is bit 16, indicating
that we exit the current voxel at scale 16. Thus, we can determine the next
SVO node to process by restoring parent node to the stack entry at scale 16
and continuing the raycast.

This process hinges on efficiently determining the highest-differing-bit (HDB)
between two binary numbers. Fortunately, the GLSL language has a built-in
functionality for determining the highest set bit in a given binary number —
the findMSB function. We can combine this function with the standard XOR
operator to very quickly determine the highest differing bits in two given uint-
vectors.

uvec3 HighestDiffBits(uvec3 V0, uvec3 V1)

{

// First, determine which bits differ between V0

// and V1 using the XOR operator. Then, determine

// the highest set bit in the result.

return findMSB(V0 ^ V1);

}

Listing 15: GLSL source of the HighestDiffBits function

6.4 Rendering Leaf Data

Although ray-casting can be used to efficiently render the sparse voxel octree
data structure, it only deals with occupancy information; that is, whether a
voxel is present at some location or not. To render rich voxel attribute data,
such as colours and normals, the renderer must somehow determine the at-
tribute data for a particular voxel given its world coordinates. One approach
would be to place all of the leaf data inside a very large three-dimensional
texture that stores each voxel at the smallest possible level of detail in a sin-
gle pixel. While this technique would support very fast data retrieval (sim-
ply lookup the texel at a leaf voxel’s world coordinates), it quickly becomes
infeasible for any reasonably large and/or detailed scene, requiring massive
amounts of texture memory. In Efficient Sparse Voxel Octrees, Laine and Karras

50

Figure 6.9: Voxelised head of Serapis, with full per-voxel colour and normal data
stored in a sparse texture

address the problem of voxel attributes by holding the leaf data in a secondary
buffer that mirrors the layout of the sparse voxel octree. While this does make
retrieval simple, since when the raycaster hits a leaf voxel it will know the in-
dex of that voxel’s parent entry in the SVO buffer, this method also leaves
large gaps in this secondary buffer where non-leaf voxels would be. In this
project, the OpenGL sparse textures extension is used to support constant
voxel lookup times without having to store large amounts of empty space or
non-leaf voxels.

6.4.1 Sparse Textures

Sparse Texturing, also called Virtual Texturing, is a graphics programming
technique that allocates a very large (normally multi-gigabyte) virtual texture,
but only stores smaller regions of that texture in physical memory. Sparse
textures mirror the CPU-side concept of virtual memory, where "pages" —
blocks of data — are moved in and out of physical RAM as they are needed.

A major advantage with sparse textures is the fact that, provided the host ma-
chine supports the GL_ARB_sparse_textures extension, sparse texture lookups
are essentially identical to regular texture lookups from a shader point of view,
since the texture hardware automatically fetches the correct page based on
the lookup coordinates.

To create this sparse texture, the tree leaf data is first indexed by the coor-
dinates of the enclosing voxel’s centre. This indexed data is then partitioned

51

Page 1

Page 0Sparse Leaf Data

Ray

Page Origin (x, y, z)

Figure 6.10: Sparse textures only map regions of the world that contain leaf data
into physical memory pages, eliminating large areas of unused data

into buckets, which can be thought of as three-dimensional coarse grids, with
either a leaf data point or null at every point. The page coordinates for each
bucket are calculated by dividing each coordinate in the bucket origin by the
respective hardware page dimensions, obtained at runtime.

6.4.2 Alternative Approaches

Unfortunately it was found that, at least for the shipped test models, the sparse
texture pages actually have very poor occupancy, resulting in a lot of wasted
space even when large empty world regions are not stored. An ideal approach
would support constant-time leaf lookups without requiring so much extra
space.

Alcantara et al’s Real Time Parallel Hashing on the GPU [2] might provide
such an approach. Alcantara et al. showed how large sparse volume data sets
could be stored on the GPU using parallel cuckoo hashing. For N voxels, their
approach consumed roughly 1.42N space, an acceptable tradeoff for constant
voxel lookup times.

52

const vec3 PageSize = Get3DSparseTexturePageSize();

for (Leaf in Leaves)

{

vec3 LeafCoords = Leaf.Position % PageSize;

vec3 BucketCoords = Leaf.Position / PageSize;

if (BucketDoesNotExist(BucketCoords))

{

Bucket = CreateBucket(BucketCoords);

}

else

{

Bucket = GetBucket(BucketCoords);

}

Bucket[LeafCoords] = Leaf.Data;

}

for (Bucket in Buckets)

{

CommitTexturePage(Bucket.Coords, Bucket.Data);

}

Listing 16: Pseudocode for building the leaf data sparse texture

53

Chapter 7: Viewer Application

Along with the core voxel library, this project also contains a small application
which serves as an example of how client developers could use the library to
render voxel scenes. The viewer application, contained within the sabre.cc

code module, provides a simple first-person scene viewer which allows users
to explore and modify generated or imported voxel scenes.

Since the viewer application is not bound by the same restrictions as the core
voxel library with regards to third-party code, the viewer utilises several li-
braries to speed up development. The GLFW [18] library is used to create
the window and handle input, the Dear ImGUI library [7] is used to create a
quick-and-dirty main menu and graphical controls and the GLAD library [11]
is used to load a modern OpenGL context.

7.1 Controls

The viewer application supports the following controls:

Input Action

W Move forward
A Move left
S Move right
D Move back
Left Shift Move down
Space Move up
Right Mouse Place voxel
Left Mouse Destroy voxel

7.2 Features

The viewer application allows users to select from a selection of pre-defined
scenes intended to serve as showcases of the project’s capabilities. Three

54

Figure 7.1: The main menu screen, built with Dear ImGUI

scenes are shipped with the project:

• Rabbit The famous Stanford Bunny, loaded from an external data file.

• Serapis Bust of Serapis, loaded from an exernal data file.

• Sphere A solid sphere, generated at runtime.

Users can also select a detail level for these scenes by dragging the "detail
level" slider, as shown in figure 7.1

55

Chapter 8: Evaluation

This project has been, by a very large margin, the most complex piece of soft-
ware I have ever worked on at the University. Over the course of development
I met with several unexpected challenges, but ultimately I believe this project
does fulfil all of the original objectives I set out to achieve except for one:
infinite scene support.

8.1 Achieved Objectives

8.1.1 Performance

One of the core objectives of this project was to deliver a library that could
compute and render an entire video frame in no more than 33 milliseconds,
corresponding to a frame-rate of 30 frames per second. The finished product
maintains a steady 60 frames per second (corresponding to 16 milliseconds
per frame) evenwhen dealing with very detailed scenes. Thesemeasurements
were obtained on a NVidia GTX 940MX graphics card using the glfwGetTime
APIs. Encouragingly, it was observed that on a GeForce GTX 1080 system, the
software was able to render all of the shipped scenes in 8 milliseconds.

While this project may have met its performance objectives, there is always
room for improvement. In particular, the polygon mesh importing code could
benefit greatly from some optimisation; currently the huge numbers of std::set
and std::unordered_map inserts are the main bottleneck 1. I chose to use
the hashtable-based triangle indexing approach so that the mesh import logic
could be cleanly encapsulated into a pure sampler function, but it may be
worth exploring alternative mesh voxelisation techniques that do not have
such high overhead. Baert et al. describe a different approach to sparse voxel
octree construction inOut-of-core construction of sparse voxel octrees [3], where
the mesh to be voxelised is first partitioned into several high-resolution voxel

1Measured with Intel VTune Amplifier

56

grids, ordered by Morton codes2, which may be intermediately saved to disk
while other partitions are being processed. The SVO is then constructed out
of these partitions without needing to load the entire high-resolution grid into
memory.

8.1.2 Scene Detail

Another important goal for this project was the ability to render very small
voxels, allowing highly-detailed scenes to be created. At the highest detail
level of ’10’, the shipped product can simulate voxels at a scale of 1

1024 . To
apply some real-world context to this, the Stanford Bunny is 7.5 inches high
[26]; an individual voxel in this model at real-world scale would be roughly
0.18 millimeters in dimension.

8.1.3 Arbitrary Scene Modifications

The shipped product supports deleting and inserting arbitrary voxels at inter-
active frame rates. However, dynamic uploading of voxel leaf data remains
to be implemented, though it would be relatively simple to add. Since the
library already holds all of the leaf data on the CPU side, to insert e.g. a new
colour one would simply need to take the leaf voxel centre position (known
at insert-time) along with the leaf data and add this to the CPU-side list of
leaves. The renderer can then determine the correct texture page to mod-
ify or create by calculating the texture page coordinates using the algorithm
outlined in listing 16.

Another caveat associated with voxel edits is the fragmentation of blocks due
to nodes being reallocated. Even though the holes that appear in blocks due to
this phenomenon are very small, they would still accumulate over thousands
of edits. A simple solution to this problem would be to mark fragmented
blocks and then periodically re-construct all marked blocks, re-packing the
nodes. The potential performance impact of this could be mitigated by copy-
ing the block to be reconstructed into a separate thread, perform the recon-
struction and then atomically swap the old block for the newly defragmented
one.

2Morton order, also called z-order, is an locality-preserving method of encoding 3D positions
into integers by interleaving the bits of the x , y and z coordinates. [24]

57

8.1.4 Educational Value

This project has been of enormous educational value; since completing the
project I have had my views on topics such as memory management and API
design challenged by various hurdles encountered throughout development.
Previously, I had held the opinion that dynamic memory management should
be avoided whenever possible, and that systems should be built to run within
tightly defined bounds. Having had to deal with much larger datasets in this
project than I had in the past, I now see that this is not always a practical
design decision, and that carefully managed dynamic memory allocation can
still be performant and simple to understand.

I have also had the opportunity to learn about a great many new technologies
and tools. GPGPU computing is becoming of huge importance, and I was
pleased to get the opportunity explore this area using compute shaders. I
also had the chance to explore advanced computer graphics techniques, such
as sparse textures, and cutting edge tools like NVidia’s NSight Graphics.

8.2 Potential Improvements

8.2.1 SVO Block Streaming

The ability to stream octree blocks in and out of memory would be a substan-
tial improvement to this project. Such a feature would allow Sabre to support
infinite world scenes by continuously streaming in generated SVO regions as
the player moves around, analogous to Minecraft’s world generation.

SVO streaming would also open up opportunities for more performance opti-
misations; octree regions that are not visible to the camera could be purged
from memory, for example.

8.2.2 Generic Voxel Attributes

Currently, the library supports two voxel attributes: colours and normals. A
way for clients to specify their own shading attributes would bring this li-
brary into line with industry-standard tools, since many clients may want to
precisely define their own material properties such as colour or glossiness.

Adding user-defined materials to this software would certainly be possible,
although GPU resources would need to be managed carefully since, with the
current design, each separate attribute requires its own OpenGL texture unit.

58

8.2.3 Support for Dynamic Linking

Currently, the library is distributed as a collection of source and header files
that are compiled directly into client applications. This approach is well-suited
to C-based application development, but is less convenient for languages that
do not follow a traditional C-like "compile and link" development process, like
Python or Lua. In those languages, it is easier to interface with C libraries by
dynamically loading the library at runtime. This technique requires that the
library in question be compiled into either a Dynamic Link Library (DLL) on
Windows or a Shared Object (SO) on Unix-like systems.

8.2.4 Texture Sampling

An interesting improvement to this library would be to have the mesh im-
porter retrieve associated colour values for voxels by sampling textures at-
tached to the 3D model. This would pave the way for a fully-integrated poly-
gon to voxel workflow, allowing clients to keep their existing infrastructure
while still leveraging the advantages of voxels.

8.3 Conclusion

Overall, I am very satisfied with this project. There are, of course, many more
improvements to be made in order to bring this project in line with industry-
standard tools, but I feel that Sabre shows the viability of voxel rendering as
a competitor to polygon-based workflows.

Over the course my final year at University, I have learned more than I ever
thought I would have to know about memory management, GPU program-
ming, API design, performance engineering and time management, to name
but a few. I have come away from this project with my views on many soft-
ware engineering practices radically changed for the better, becoming a more
well-rounded and strategically-minded programmer.

59

Code References

Certain code snippets throughout the project are based on external sources.
These sources are listed below along with the file name and line number(s)
at which they occur.

• sabre_math.h Over several years, I had accumulated math utilities in-
side this file. It is cited here in the interests of avoiding self-plagiarism.
Except when indicated otherwise, all code within this file is my own.
Power, 2019.

• sabre_data.cc:419-425Ray projection plane computationmethod. Partly
based on code sourced from https://github.com/johnBuffer/VoxelCaster/

blob/6477c4e2dc2f90a578d02d3ad7d3c40ab7443a14/src/gpu_raycaster.

comp. Jean "JohnBuffer" Tampon, 2019.

• sabre_import.cc:35-51 Morton code encoding for 3-vectors. Sourced
from https://fgiesen.wordpress.com/2009/12/13/decoding-morton-

codes/. Fabien "ryg" Giesen, 2009.

• sabre.cc:80-99Cube-sphere intersection formula. Sourced from https:

//stackoverflow.com/a/4579069/3121161. Ben Voigt, 2011.

• sabre_math.h:1172:1191 Fast rotation of vector by quaternion. Sourced
from https://fgiesen.wordpress.com/2019/02/09/rotating-a-single-

vector-using-a-quaternion/. Fabien "ryg" Giesen, 2019.

• sabre_data.cc:165-178, sabre_svo.cc:848-862Ray-box intersection.
Further discussed in the report with full citation to paper. Majercik et al.,
2018. "A Ray-Box Intersection Algorithm and Efficient Dynamic Voxel
Rendering".

• sabre_import.cc:111 SSE component-wise sign negation. https://

stackoverflow.com/a/20084034/3121161. Paul T. Russel, 2013.

• sabre_import.cc:154-158 SSE dot product. https://stackoverflow.

60

https://github.com/johnBuffer/VoxelCaster/blob/6477c4e2dc2f90a578d02d3ad7d3c40ab7443a14/src/gpu_raycaster.comp
https://github.com/johnBuffer/VoxelCaster/blob/6477c4e2dc2f90a578d02d3ad7d3c40ab7443a14/src/gpu_raycaster.comp
https://github.com/johnBuffer/VoxelCaster/blob/6477c4e2dc2f90a578d02d3ad7d3c40ab7443a14/src/gpu_raycaster.comp
https://fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/
https://fgiesen.wordpress.com/2009/12/13/decoding-morton-codes/
https://stackoverflow.com/a/4579069/3121161
https://stackoverflow.com/a/4579069/3121161
https://fgiesen.wordpress.com/2019/02/09/rotating-a-single-vector-using-a-quaternion/
https://fgiesen.wordpress.com/2019/02/09/rotating-a-single-vector-using-a-quaternion/
https://stackoverflow.com/a/20084034/3121161
https://stackoverflow.com/a/20084034/3121161
https://stackoverflow.com/a/35270026/3121161
https://stackoverflow.com/a/35270026/3121161

com/a/35270026/3121161. Peter Cordes, 2016.

• sabre_import.cc:433-525GLTFmesh loading partially based onMeshOp-
timizer. https://github.com/zeux/meshoptimizer/blob/acd6d73a8535cee3b35f7542c7fa796d053761ce/
gltf/parsegltf.cpp. Arseny "zeux" Kapoulkine, 2020.

61

https://stackoverflow.com/a/35270026/3121161
https://stackoverflow.com/a/35270026/3121161
https://github.com/zeux/meshoptimizer/blob/acd6d73a8535cee3b35f7542c7fa796d053761ce/gltf/parsegltf.cpp
https://github.com/zeux/meshoptimizer/blob/acd6d73a8535cee3b35f7542c7fa796d053761ce/gltf/parsegltf.cpp

References

[1] Tomas Akenine-Möllser. “Fast 3D triangle-box overlap testing”. In: Jour-
nal of graphics tools 6.1 (2001), pp. 29–33.

[2] Dan A Alcantara et al. “Real-time parallel hashing on the GPU”. In:
ACM Transactions on Graphics (TOG) 28.5 (2009), pp. 1–9.

[3] Jeroen Baert, Ares Lagae, and Philip Dutré. “Out-of-core construction
of sparse voxel octrees”. In: Proceedings of the 5th high-performance
graphics conference. 2013, pp. 27–32.

[4] Mike Bailey. How to Use and Teach OpenGL Compute Shaders. 2014.
url: https://www.khronos.org/assets/uploads/developers/
library / 2014 - siggraph - bof / KITE - BOF _ Aug14 . pdf (visited on
01/03/2020).

[5] Tavian Barnes. Fast, branchless ray/bounding box intersections. 2011.
url: https://tavianator.com/fast- branchless- raybounding-
box-intersections/ (visited on 01/03/2020).

[6] Kai Burjack. Ray tracing with OpenGL Compute Shaders (Part I). 2017.
url: https://github.com/LWJGL/lwjgl3- wiki/wiki/2.6.1.-
Ray-tracing-with-OpenGL-Compute-Shaders-%5C%28Part-I%5C%29

(visited on 01/04/2020).

[7] Omar Cornut. Dear ImGUI. https://github.com/ocornut/imgui.
[Software Library]. 2019.

[8] Alex Evans. Learning From Failure. 2015. url: https://www.youtube.
com/watch?v=u9KNtnCZDMI (visited on 01/05/2020).

[9] Jon Fingas. Here’s how ’Minecraft’ creates its gigantic worlds. 2015. url:
https://www.engadget.com/2015/03/04/how-minecraft-worlds-

are-made/ (visited on 01/04/2020).

62

https://www.khronos.org/assets/uploads/developers/library/2014-siggraph-bof/KITE-BOF_Aug14.pdf
https://www.khronos.org/assets/uploads/developers/library/2014-siggraph-bof/KITE-BOF_Aug14.pdf
https://tavianator.com/fast-branchless-raybounding-box-intersections/
https://tavianator.com/fast-branchless-raybounding-box-intersections/
https://github.com/LWJGL/lwjgl3-wiki/wiki/2.6.1.-Ray-tracing-with-OpenGL-Compute-Shaders-%5C%28Part-I%5C%29
https://github.com/LWJGL/lwjgl3-wiki/wiki/2.6.1.-Ray-tracing-with-OpenGL-Compute-Shaders-%5C%28Part-I%5C%29
https://github.com/ocornut/imgui
https://www.youtube.com/watch?v=u9KNtnCZDMI
https://www.youtube.com/watch?v=u9KNtnCZDMI
https://www.engadget.com/2015/03/04/how-minecraft-worlds-are-made/
https://www.engadget.com/2015/03/04/how-minecraft-worlds-are-made/

[10] Patrick Healy. Computer Graphics II: Transformations. 2019. url: http:
/ / garryowen . csisdmz . ul . ie / ~cs4085 / resources / lect04 . pdf

(visited on 01/04/2020).

[11] David Herberth. GLAD. https://github.com/Dav1dde/glad. [Soft-
ware Library]. 2019.

[12] The Khronos Group Inc. glTF Overview - The Khronos Group Inc. 2015.
url: https://www.khronos.org/gltf/ (visited on 05/03/2020).

[13] Khronos Group.OpenGL 4 Reference Pages. url: https://www.khronos.
org/registry/OpenGL-Refpages/gl4/ (visited on 01/03/2020).

[14] Johannes Kuhlmann. CGLTF. 2018. url: https://github.com/jkuhlmann/
cgltf (visited on 05/03/2020).

[15] Samuli Laine and Tero Karras. “Efficient sparse voxel octrees”. In: IEEE
Transactions on Visualization and Computer Graphics 17.8 (2010), pp. 1048–
1059.

[16] Eric Lengyel. Foundations of Game Engine Development, Volume 1:Math-
ematics. Terathon Software LLC, 2016. isbn: 978-0985811747.

[17] William E. Lorensen and Harvey E. Cline. “Marching Cubes: A High
Resolution 3D Surface Construction Algorithm”. In: Proceedings of the
14th Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’87. New York, NY, USA: Association for Computing Ma-
chinery, 1987, pp. 163–169. isbn: 0897912276. doi: 10.1145/37401.
37422. url: https://doi.org/10.1145/37401.37422.

[18] Camilla Löwy. GLFW 3. https : / / glfw . org/. [Software Library].
2019.

[19] Alexander Majercik et al. “A Ray-Box Intersection Algorithm and Ef-
ficient Dynamic Voxel Rendering”. In: Journal of Computer Graphics
Techniques Vol 7.3 (2018).

[20] Morgan McGuire. Computer Graphics Archive. July 2017. url: https:
//casual-effects.com/data.

[21] Innes McKendrick. “Continuous World Generation in No Man’s Sky”.
In: Game Developers Conference. 2017.

[22] Donald JR Meagher. Octree encoding: A new technique for the represen-
tation, manipulation and display of arbitrary 3-d objects by computer.
Electrical and Systems Engineering Department Rensseiaer Polytech-
nic . . ., 1980.

63

http://garryowen.csisdmz.ul.ie/~cs4085/resources/lect04.pdf
http://garryowen.csisdmz.ul.ie/~cs4085/resources/lect04.pdf
https://github.com/Dav1dde/glad
https://www.khronos.org/gltf/
https://www.khronos.org/registry/OpenGL-Refpages/gl4/
https://www.khronos.org/registry/OpenGL-Refpages/gl4/
https://github.com/jkuhlmann/cgltf
https://github.com/jkuhlmann/cgltf
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422
https://doi.org/10.1145/37401.37422
https://glfw.org/
https://casual-effects.com/data
https://casual-effects.com/data

[23] Minecraft Wiki Contributors. Chunk format. 2019. url: https : / /
minecraft . gamepedia . com / index . php ? title = Chunk _ format &

oldid=1478710 (visited on 01/04/2020).

[24] Guy M Morton. A computer oriented geodetic data base and a new tech-
nique in file sequencing. Tech. rep. International Business Machines
Company New York, 1966.

[25] New Sound Games. Sparse Voxel Octree demo. 2012. url: https://
youtu.be/km0DpZUgvbg (visited on 01/03/2020).

[26] Greg Turk. The Stanford Bunny. 2000. url: https://www.cc.gatech.
edu/~turk/bunny/bunny.html (visited on 05/04/2020).

[27] Jim Van Verth. “Math for Game Developers: Understanding quater-
nions”. In: Game Developers Conference. 2013.

[28] Wikimedia Commons. File:Voxels.svg — Wikimedia Commons, the free
media repository. [Online; accessed 2-January-2020]. 2018. url: https:
//commons.wikimedia.org/w/index.php?title=File:Voxels.svg&

oldid=314773564.

[29] Chris Wyman et al. “An Overview of Next-Generation Graphics APIs”.
In: ACM SIGGRAPH 2015 Courses. SIGGRAPH ’15. Los Angeles, Califor-
nia: Association for ComputingMachinery, 2015. isbn: 9781450336345.
doi: 10.1145/2776880.2787704. url: https://doi.org/10.1145/
2776880.2787704.

64

https://minecraft.gamepedia.com/index.php?title=Chunk_format&oldid=1478710
https://minecraft.gamepedia.com/index.php?title=Chunk_format&oldid=1478710
https://minecraft.gamepedia.com/index.php?title=Chunk_format&oldid=1478710
https://youtu.be/km0DpZUgvbg
https://youtu.be/km0DpZUgvbg
https://www.cc.gatech.edu/~turk/bunny/bunny.html
https://www.cc.gatech.edu/~turk/bunny/bunny.html
https://commons.wikimedia.org/w/index.php?title=File:Voxels.svg&oldid=314773564
https://commons.wikimedia.org/w/index.php?title=File:Voxels.svg&oldid=314773564
https://commons.wikimedia.org/w/index.php?title=File:Voxels.svg&oldid=314773564
https://doi.org/10.1145/2776880.2787704
https://doi.org/10.1145/2776880.2787704
https://doi.org/10.1145/2776880.2787704

	Abstract
	Acknowledgements
	Introduction
	Context
	Polygon Rendering
	Voxels
	Code Structure

	Motivation
	Objectives

	Research
	Technologies
	Programming Language
	Graphics API
	Tools

	Mathematics
	Data Storage
	Rendering Methods
	OpenGL Compute Shaders
	Ray-Box Intersection

	Polygon Renderer Prototype

	Voxel Data Storage
	Octrees
	The Sparse Voxel Octree
	SVO Blocks
	SVO Nodes
	Far Pointers

	SVO Construction
	Sampler Functions
	Determining the Scene Scale
	Building the SVO

	Dynamic Edits
	Client API
	Inserting Voxels
	Determining the Child Octant
	Creating a New Branch

	Deleting Voxels
	Node Reallocation

	Importing Meshes
	The GLTF File Format
	Importing Polygon Meshes
	Mesh Loading
	Building the Triangle Index
	Building the SVO

	Rendering
	Renderer Pipeline
	Compute Shader Background
	Transferring Occupancy Data
	Pre-render setup
	Voxel Rendering
	Displaying the final image

	Ray-Box Intersection Algorithm
	Raycasting Algorithm
	Push - Entering a child voxel
	Advance - Examining a Sibling Voxel
	Pop - Exiting a Voxel

	Rendering Leaf Data
	Sparse Textures
	Alternative Approaches

	Viewer Application
	Controls
	Features

	Evaluation
	Achieved Objectives
	Performance
	Scene Detail
	Arbitrary Scene Modifications
	Educational Value

	Potential Improvements
	SVO Block Streaming
	Generic Voxel Attributes
	Support for Dynamic Linking
	Texture Sampling

	Conclusion

